Morse Shellings Out of Discrete Morse Functions

被引:0
作者
Welschinger, Jean-Yves [1 ]
机构
[1] Univ Claude Bernard Lyon 1, Inst Camille Jordan, UMR 5208, CNRS, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
关键词
Simplicial complex; Shellable complex; Handle decomposition; Barycentric subdivision; Discrete Morse theory; Piecewise linear manifold; DECOMPOSITIONS; MANIFOLDS;
D O I
10.1007/s00454-025-00729-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
From the topological viewpoint, Morse shellings of finite simplicial complexes are pinched handle decompositions which extend the classical shellings of combinatorial topology. We prove that every discrete Morse function on a finite simplicial complex induces Morse shellings on its second barycentric subdivision whose critical tiles-or pinched handles-are in one-to-one correspondence with the critical faces of the function, preserving the index. The same holds true, given any smooth Morse function on a closed manifold, for any piecewise-linear triangulation on it after sufficiently many barycentric subdivisions.
引用
收藏
页码:896 / 918
页数:23
相关论文
共 38 条