Non-invasive and Real-time Monitoring of Organismal Respiration Using Laser-induced Breakdown Spectroscopy

被引:0
作者
Li, Xiangxue [1 ]
Han, Boyuan
Gao, Wenhan [2 ,3 ]
Iroshan, Asiri [2 ,3 ]
Cai, Yuyao [2 ,3 ]
Liu, Yuzhu [2 ,3 ]
机构
[1] Chengdu Univ Technol, Coll Comp Sci & Cyber Secur, Chengdu 610059, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, State Key Lab Cultivat Base Atmospher Optoelect De, Nanjing 210044, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Jiangsu Int Joint Lab Meteorol Photon & Optoelect, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
TEMPERATURE; ALLOY; SOIL;
D O I
10.46770/AS.2024.241
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Respiration is an important index to evaluate the life status of organisms, thus monitoring respiration is of great significance. This study proposes a new methodology for non-invasive and real-time monitoring of organismal respiration based on laser-induced breakdown spectroscopy (LIBS). The study comprises two main components: dynamic monitoring and static analysis. In the dynamic monitoring section, LIBS is used to continuously detect and analyze multiple elements (C, H, O, and N) exhaled steadily by participants, with the carbon signal showing the closest correlation to the respiratory cycle. Fast Fourier Transform (FFT) is then applied to the carbon signal to achieve frequency domain analysis. Furthermore, it is also found that the presence of organismal respiration should be inferred from multiple element signals, rather than relying solely on the presence of carbon signal. In the static analysis, linear discriminant analysis (LDA) and backpropagation artificial neural networks (BP-ANN) are employed after LIBS measurement indicating the traceability of respiration sources is possible. This study offers a novel perspective on respiratory monitoring, demonstrating the potential of this method for real-time, convenient, and cost-effective respiration monitoring.
引用
收藏
页码:508 / 515
页数:106
相关论文
共 27 条
  • [1] Park J., Choi S., Takaton J., Zhao S., Harrahill A., Han B., Wang F., Science, 383, (2024)
  • [2] Yvon-Durocher G., Caffrey J. M., Cescatti A., Dossena M., Giorgio P. D., Gasol J. M., Montoya J. M., Pumpanen J., Staehr P., Trimmer M., Woodward G., Allen A.P., Nature, 487, pp. 472-476, (2012)
  • [3] Fonseca P., Ross M., Cerny A., Cerny A., Anderer P., Schipper F., Grassi A., van Gilst M., Overeem S., IEEE J. Biomed. Health, 28, pp. 3895-3906, (2024)
  • [4] Siddiqui H., Saleem A. A., Bashir I., Kainat Z., Rustam F., Diez I. D. L. T., Dudley S., Ashraf I., Electronics-Switz, 11, (2022)
  • [5] Fieselmann J. F., Hendryx M. S., Helms C. M., Wakefield D.S., J. Gen. Intern. Med, 8, pp. 354-360, (1993)
  • [6] Nan B., Du J.J., Wu C.Y., Hong D., Chen J.X., Nowak R., Lv Z. L., IEEE J. Biomed. Health, 27, pp. 2276-2285, (2023)
  • [7] Wang T. B., Wang Z. S., Liu X. T., Liu W.B., Wang L. Y., Zheng Y. Q., Hu J., Gu T., Zhang D. Q., IEEE T. Mobile Comput, 23, pp. 3876-3889, (2024)
  • [8] Karlen W., Raman S., Ansermino J. M., Dumont G. A., IEEE T. Bio-Med. Eng, 60, pp. 1946-1953, (2013)
  • [9] Chen G. D., Gua R. F., Shi M., Dai X., Zhou N., Chen D. P., Mao H. Y., Microsyst. Nanoeng, 8, (2022)
  • [10] Zhou Z. Y., Ge Y. F., Liu Y. Z., Opt. Express, 29, pp. 39811-39823, (2021)