A Composition Formula for the Modified Analytic Function Space Fourier-Feynman Transform

被引:0
作者
Chung, Hyun Soo [1 ]
机构
[1] Dankook Univ, Dept Math, Cheonan 31116, South Korea
关键词
generalized Brownian motion process; Gaussian process; composition formula; analytic function space Fourier-Feynman transform;
D O I
10.3390/math12193035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Composition formula is one of the most important research topics in functional analysis theory. Various relationships can be obtained using the composition formula. Since the generalized Brownian motion process used in this paper has a non-zero mean function, there are many restrictions on obtaining a composition formula for the modified analytic function space Fourier-Feynman transform. This paper contains an idea of how the composition Formula (9) below is established for the modified analytic function space Fourier-Feynman transform on function space. Using this idea, we are able to solve a problem that had never been solved before.
引用
收藏
页数:9
相关论文
共 8 条
[1]   Rotation of Gaussian processes on function space [J].
Chang, Seung Jun ;
Skoug, David ;
Choi, Jae Gil .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) :2295-2308
[2]   Integral Transforms of Functionals in L 2(C a,b [0,T]) [J].
Chang, Seung Jun ;
Chung, Hyun Soo ;
Skoug, David .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2009, 15 (04) :441-462
[3]  
Chang SJ, 1996, ROCKY MT J MATH, V26, P37, DOI 10.1216/rmjm/1181072102
[4]   Integration by parts formulas involving generalized Fourier-Feynman transforms on function space [J].
Chang, SJ ;
Choi, JG ;
Skoug, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (07) :2925-2948
[5]   Generalized Integral Transforms via the Series Expressions [J].
Chung, Hyun Soo .
MATHEMATICS, 2020, 8 (04)
[6]  
Nelson E., 1967, DYNAMICAL THEORIES B, DOI DOI 10.1515/9780691219615
[8]  
Yeh J. J, 1973, Stochastic Processes and the Wiener Integral, V13