A High-Order p-adaptive Algorithm for Large-Eddy Simulation Based on a Discontinuous Galerkin Method

被引:0
作者
Naddei, Fabio [1 ]
Plata, Marta de la Llave [2 ]
机构
[1] Inst Polytech Paris, DAAA, ONERA, Chatillon, France
[2] Univ Toulouse, DMPE, ONERA, Toulouse, France
关键词
High-order; discontinuous Galerkin; adaptive algorithm; error estimation; Large-Eddy simulation; NAVIER-STOKES; FLOW; SEPARATION; DISCRETIZATION; REFINEMENT; MODEL;
D O I
10.1080/10618562.2024.2347337
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The aim of this paper is to present and analyse a static p-adaptation algorithm based on a modal high-order discontinuous Galerkin method. To this end, we first define appropriate error estimation strategies that provide information on the necessary time-independent local resolution quality. Two error indicators are employed, the Small-Scale Energy Density (SSED) indicator proposed in Naddei (2019) and the novel Small-Scale Lifted (SSL) indicator developed in this work. Based on the SSED estimator, three different strategies are considered to extend these indicators to perform static p-adaptive simulations of unsteady flow problems. The first approach consists in applying the SSED estimator to the time-averaged solution (SSED-A). The second and third approaches consist in evaluating the temporal $ L<^>2 $ L2 and $ L<^>\infty $ L infinity-norms of the indicator computed from the instantaneous solution, called respectively $ L<^>2 $ L2-SSED and $ L<^>\infty $ L infinity-SSED. These strategies are compared by performing simulations of the periodic laminar flow past a cylinder at $ {\rm Re}=100 $ Re=100 and Mach = 0.1, and of the turbulent flow over periodic hills at $ {\rm Re}=2\,800 $ Re=2800. The outcome from these computations shows that the best performance is achieved when the $ L<^>\infty $ L infinity-SSED indicator is used. Finally, the developed adaptation algorithm is applied to the LES of the transitional flow past a NACA0012 airfoil at $ {\rm Re}=50\,000 $ Re=50000 and $ \alpha =5<^>\circ $ alpha=5 degrees using the $ L<^>\infty $ L infinity-SSED and the $ L<^>\infty $ L infinity-SSL indicators. It is shown that the use of the SSL indicator provides improved results as compared to the SSED indicator. The results presented in this paper demonstrate that the use of p-adaption improves the quality of under-resolved turbulent flow simulations for a similar computational cost as compared to p-uniform simulations.
引用
收藏
页码:102 / 134
页数:33
相关论文
共 64 条
  • [1] Dynamical p-adaptivity for LES of compressible flows in a high order DG framework
    Abba, Antonella
    Recanati, Alessandro
    Tugnoli, Matteo
    Bonaventura, Luca
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 420
  • [2] Parallel adaptive mesh refinement for large-eddy simulations of turbulent flows
    Antepara, O.
    Lehmkuhl, O.
    Borrell, R.
    Chiva, J.
    Oliva, A.
    [J]. COMPUTERS & FLUIDS, 2015, 110 : 48 - 61
  • [3] Unified analysis of discontinuous Galerkin methods for elliptic problems
    Arnold, DN
    Brezzi, F
    Cockburn, B
    Marini, LD
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) : 1749 - 1779
  • [4] Balakumar P., 2015, 45 AIAA FLUID DYN C
  • [5] Hybrid RANS/LES Simulations and Aeroacoustic Analysis of Jet Flows using an hp-Adaptive Discontinuous Galerkin Method
    Basile, Francesca
    Chapelier, Jean-Baptiste
    Laraufie, Romain
    Frey, Pascal
    [J]. FLOW TURBULENCE AND COMBUSTION, 2023, 110 (02) : 239 - 273
  • [6] A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations
    Bassi, F
    Rebay, S
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) : 267 - 279
  • [7] Ap-adaptive Matrix-Free Discontinuous Galerkin Method for the Implicit LES of Incompressible Transitional Flows
    Bassi, F.
    Botti, L.
    Colombo, A.
    Crivellini, A.
    Franciolini, M.
    Ghidoni, A.
    Noventa, G.
    [J]. FLOW TURBULENCE AND COMBUSTION, 2020, 105 (02) : 437 - 470
  • [8] Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations
    Bassi, F
    Crivellini, A
    Rebay, S
    Savini, M
    [J]. COMPUTERS & FLUIDS, 2005, 34 (4-5) : 507 - 540
  • [9] On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations
    Bassi, F.
    Botti, L.
    Colombo, A.
    Di Pietro, D. A.
    Tesini, P.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (01) : 45 - 65
  • [10] Bassi F., 1997, 2 EUROPEAN C TURBOMA, P99