Sustainable Mobility: Machine Learning-Driven Deployment of EV Charging Points in Dublin

被引:0
|
作者
Mutua, Alexander Mutiso [1 ]
de Frein, Ruairi [1 ]
机构
[1] Technol Univ Dublin, Sch Elect & Elect Engn, Dublin D07 EWV4, Ireland
基金
爱尔兰科学基金会;
关键词
electric vehicle charging points; charging infrastructure optimisation; charging point placement strategies; EV charging demand; machine learning; feedforward neural networks; sustainable urban planning; smart transport systems; range anxiety; optimisation of infrastructure; ELECTRIC VEHICLES; V2G SYSTEMS; STATIONS; ASSIGNMENT; PLACEMENT;
D O I
10.3390/su16229950
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Electric vehicle (EV) drivers in urban areas face range anxiety due to the fear of running out of charge without timely access to charging points (CPs). The lack of sufficient numbers of CPs has hindered EV adoption and negatively impacted the progress of sustainable mobility. We propose a CP distribution algorithm that is machine learning-based and leverages population density, points of interest (POIs), and the most used roads as input parameters to determine the best locations for deploying CPs. The objects of the following research are as follows: (1) to allocate weights to the three parameters in a 6 km by 10 km grid size scenario in Dublin in Ireland so that the best CP distribution is obtained; (2) to use a feedforward neural network (FNNs) model to predict the best parameter weight combinations and the corresponding CPs. CP deployment solutions are classified as successful when an EV is located within 100 m of a CP at the end of a trip. We find that (1) integrating the GEECharge and EV Portacharge algorithms with FNNs optimises the distribution of CPs; (2) the normalised optimal weights for the population density, POIs, and most used road parameters determined by this approach result in approximately 109 CPs being allocated in Dublin; (3) resizing the grid from 6 km by 10 km to 10 km by 6 km and rotating it at an angle of -350 degrees results in a 5.7% rise in the overall number of CPs in Dublin; (4) reducing the grid cell size from 1 km2 to 500 m2 reduces the mean distance between CPs and the EVs. This research is vital to city planners as we show that city planners can use readily available data to generate these parameters for urban planning decisions that result in EV CP networks, which have increased efficiency. This will promote EV usage in urban transportation, leading to greater sustainability.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Machine Learning Approaches for EV Charging Behavior: A Review
    Shahriar, Sakib
    Al-Ali, A. R.
    Osman, Ahmed H.
    Dhou, Salam
    Nijim, Mais
    IEEE ACCESS, 2020, 8 : 168980 - 168993
  • [2] Machine Learning-Driven Biomaterials Evolution
    Suwardi, Ady
    Wang, FuKe
    Xue, Kun
    Han, Ming-Yong
    Teo, Peili
    Wang, Pei
    Wang, Shijie
    Liu, Ye
    Ye, Enyi
    Li, Zibiao
    Loh, Xian Jun
    ADVANCED MATERIALS, 2022, 34 (01)
  • [3] Extending OpenMP for Machine Learning-Driven Adaptation
    Liao, Chunhua
    Wang, Anjia
    Georgakoudis, Giorgis
    de Supinski, Bronis R.
    Yan, Yonghong
    Beckingsale, David
    Gamblin, Todd
    ACCELERATOR PROGRAMMING USING DIRECTIVES, WACCPD 2021, 2022, 13194 : 49 - 69
  • [4] Machine Learning-Driven SERS Nanoendoscopy and Optophysiology
    Chisanga, Malama
    Masson, Jean-Francois
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2024, 17 : 313 - 338
  • [5] A machine learning-driven web application for sign language learning
    Orovwode, Hope
    Ibukun, Oduntan
    Abubakar, John Amanesi
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [6] Machine learning-driven sustainable urban design: transforming Singapore's landscape with vertical greenery
    Hussein M.Y.A.
    AL-Karablieh M.
    Al-Kfouf S.
    Taani M.
    Asian Journal of Civil Engineering, 2024, 25 (5) : 3851 - 3863
  • [7] Prediction of EV Charging Behavior Using Machine Learning
    Shahriar, Sakib
    Al-Ali, A. R.
    Osman, Ahmed H.
    Dhou, Salam
    Nijim, Mais
    IEEE ACCESS, 2021, 9 : 111576 - 111586
  • [8] Machine learning-driven predictions and interventions for cardiovascular occlusions
    Thomas, Anvin
    Jose, Rejath
    Syed, Faiz
    Wei, Ong Chi
    Toma, Milan
    TECHNOLOGY AND HEALTH CARE, 2024, 32 (05) : 3535 - 3556
  • [9] Machine learning-driven credit risk: a systemic review
    Shi, Si
    Tse, Rita
    Luo, Wuman
    D'Addona, Stefano
    Pau, Giovanni
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (17) : 14327 - 14339
  • [10] Machine learning-driven credit risk: a systemic review
    Si Shi
    Rita Tse
    Wuman Luo
    Stefano D’Addona
    Giovanni Pau
    Neural Computing and Applications, 2022, 34 : 14327 - 14339