Deep learning-based prediction of Monte Carlo dose distribution for heavy ion therapy

被引:1
作者
He, Rui [1 ,2 ,3 ,4 ]
Zhang, Hui [1 ,3 ,4 ]
Wang, Jian [1 ,3 ,4 ,5 ]
Shen, Guosheng [1 ,3 ,4 ]
Luo, Ying [1 ,3 ,4 ,5 ]
Zhang, Xinyang [1 ,3 ,4 ,5 ]
Ma, Yuanyuan [1 ,3 ,4 ]
Liu, Xinguo [1 ,3 ,4 ]
Li, Yazhou [1 ,3 ,4 ,5 ,6 ]
Peng, Haibo [2 ]
He, Pengbo [1 ,3 ,4 ]
Li, Qiang [1 ,3 ,4 ,5 ,7 ]
机构
[1] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou, Peoples R China
[3] Chinese Acad Sci, Key Lab Heavy Ion Radiat Biol & Med, Lanzhou 730000, Peoples R China
[4] Key Lab Basic Res Heavy Ion Radiat Applicat Med, Lanzhou 730000, Gansu Province, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[6] Gansu Prov Hosp, Lanzhou 730000, Peoples R China
[7] Putian Lanhai Nucl Med Res Ctr, Putian 351152, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Heavy ion therapy; Dose prediction; Monte Carlo simulation; Analytical algorithm; SIMULATION;
D O I
10.1016/j.phro.2025.100735
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: Current methods, like treatment planning system algorithms (TPSDose), lack accuracy, whereas Monte Carlo dose distribution (MCDose) is accurate but computationally intensive. We proposed a deep learning (DL) model for rapid prediction of Monte Carlo simulated dose distribution (MCDose) in heavy ion therapy (HIT). Materials and methods: We developed a DL model- the Cascade Hierarchically Densely 3D U-Net (CHD U-Net)- to predict MCDose using computed tomography images and TPSDose of 67 head-and-neck patients and 30 thorax-and-abdomen patients. We also compared the results with other proton dose DL models and TPSDose. Results: Compared to TPSDose, the gamma passing rate (GPR) improved by 16 % (1 %/1 mm). Notably, the model achieved 99 % and 97 % accuracy under clinically relevant criteria (3 %/3 mm) across the whole dose distribution in patients. For head-and-neck patients, the GPRs of the C3D and HD U-Net models in the PTV region were 97 % and 85 %, and in the body were 98 % and 97 %, respectively. For thorax-and-abdomen patients, the GPR of the C3D and HD U-Net models in the PTV region were 71 % and 51 %, and in the body were 95 % and 90 %, respectively. Conclusions: The proposed CHD U-Net model can predict MCDose in a few seconds and outperforms two alternative DL models. The predicted dose can replace TPSDose in HIT clinical process due to its MC simulation accuracy, thus improving the accuracy of dose calculation and providing a valuable reference for quality assurance.
引用
收藏
页数:8
相关论文
共 41 条
[1]   OpenKBP: The open-access knowledge-based planning grand challenge and dataset [J].
Babier, Aaron ;
Zhang, Binghao ;
Mahmood, Rafid ;
Moore, Kevin L. ;
Purdie, Thomas G. ;
McNiven, Andrea L. ;
Chan, Timothy C. Y. .
MEDICAL PHYSICS, 2021, 48 (09) :5549-5561
[2]   Effects of nuclear interaction corrections and trichrome fragment spectra modelling on dose and linear energy transfer distributions in carbon ion radiotherapy [J].
Bazani, Alessia ;
Brunner, Jacob ;
Russo, Stefania ;
Carlino, Antonio ;
Colomar, Daniel Simon ;
Andersson, Walter Ikegami ;
Ciocca, Mario ;
Stock, Markus ;
Fossati, Piero ;
Orlandi, Ester ;
Glimelius, Lars ;
Molinelli, Silvia ;
Knausl, Barbara .
PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2024, 29
[3]   Online adaption approaches for intensity modulated proton therapy for head and neck patients based on cone beam CTs and Monte Carlo simulations [J].
Botas, P. ;
Kim, J. ;
Winey, B. ;
Paganetti, H. .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (01)
[4]   FRoG-A New Calculation Engine for Clinical Investigations with Proton and Carbon Ion Beams at CNAO [J].
Choi, KyungDon ;
Mein, Stewart B. ;
Kopp, Benedikt ;
Magro, Giuseppe ;
Molinelli, Silvia ;
Ciocca, Mario ;
Mairani, Andrea .
CANCERS, 2018, 10 (11)
[5]   3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture [J].
Dan Nguyen ;
Jia, Xun ;
Sher, David ;
Lin, Mu-Han ;
Iqbal, Zohaib ;
Liu, Hui ;
Jiang, Steve .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (06)
[6]   A Data-Driven Fragmentation Model for Carbon Therapy GPU-Accelerated Monte-Carlo Dose Recalculation [J].
De Simoni, Micol ;
Battistoni, Giuseppe ;
De Gregorio, Angelica ;
De Maria, Patrizia ;
Fischetti, Marta ;
Franciosini, Gaia ;
Marafini, Michela ;
Patera, Vincenzo ;
Sarti, Alessio ;
Toppi, Marco ;
Traini, Giacomo ;
Trigilio, Antonio ;
Schiavi, Angelo .
FRONTIERS IN ONCOLOGY, 2022, 12
[7]   Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique [J].
Fan, Jiawei ;
Wang, Jiazhou ;
Chen, Zhi ;
Hu, Chaosu ;
Zhang, Zhen ;
Hu, Weigang .
MEDICAL PHYSICS, 2019, 46 (01) :370-381
[8]  
GateContrib, Dosimetry, Radiotherapy Example
[9]   Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1026-1034
[10]   Validation and application of a fast Monte Carlo algorithm for assessing the clinical impact of approximations in analytical dose calculations for pencil beam scanning proton therapy [J].
Huang, Sheng ;
Souris, Kevin ;
Li, Siyang ;
Kang, Minglei ;
Montero, Ana Maria Barragan ;
Janssens, Guillaume ;
Lin, Alexander ;
Garver, Elizabeth ;
Ainsley, Christopher ;
Taylor, Paige ;
Xiao, Ying ;
Lin, Liyong .
MEDICAL PHYSICS, 2018, 45 (12) :5631-5642