Revealing the regulation mechanism of carbon dots on Ni(OH)2 for optimizing methanol electrooxidation activity

被引:0
作者
Zhao, Man [1 ]
Qiang, Liwu [1 ]
Bai, Meng [1 ]
Xiao, He [1 ]
Zhang, Li [1 ]
Zhang, Junming [1 ]
Hu, Tianjun [1 ]
Lv, Baoliang [1 ]
Wang, Shengxiang [2 ,3 ]
Jia, Jianfeng [1 ]
机构
[1] Shanxi Normal Univ, Sch Chem & Mat Sci, Key Lab Magnet Mol & Magnet Informat Mat, Minist Educ, Taiyuan 030000, Peoples R China
[2] Spallat Neutron Source Sci Ctr, Dongguan 523803, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
关键词
Carbon dots; Methanol electrooxidation; Ni(OH)2; PERFORMANCE; ELECTROCATALYSTS; GENERATION; EVOLUTION; GRAPHENE;
D O I
10.1016/j.cej.2025.160520
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Rational design of Ni-based electrocatalysts for methanol electrooxidation reaction (MOR) and in-depth understanding of their catalytic mechanism remain a challenge. Herein, carbon dots/graphene heterostructure is constructed to load Ni(OH)2 and the role of carbon dots focuses on regulating distribution and electronic property of Ni(OH)2. Regulation mechanism of carbon dots on Ni(OH)2 for optimizing MOR activity are revealed by in-situ Raman, in-situ FTIR, operando electrochemical impedance spectroscopy, X-ray absorption fine structure (XAFS) spectroscopy, and so on. It's found carbon dots could disperse Ni species and regulate their distribution configuration. Appropriate amount of carbon dots promotes the formation of highly dispersed CDs&Ni(OH)2 type. Because of strong interaction between Ni(OH)2 and CDs, coordination environment and local electronic structure of Ni in Ni-CDs/G can be regulated by carbon dots, leading to phase-ratio variation of alpha-Ni (OH)2/(3-Ni(OH)2 and d-band center shift of Ni(OH)2. For the best Ni-4CDs/G electrocatalyst, more formed alpha-Ni (OH)2 lead to d-band center downshift from the EF level and optimized its adsorption of methanol. Ni-4CDs/G shows the specific activity of 299.2 mA cm-2 and mass activity of 3756.5 mA mg- 1 at peak current. In water splitting test, lower initial overpotential of 140 mV is found in methanol electrolysis than that in water electrolysis. This opens a new door to regulate the metal-based electrocatalysts by CDs and will inspire more people to explore CDs-based materials for electrocatalytic application.
引用
收藏
页数:12
相关论文
共 49 条
[1]  
Li S., Ma R., Hu J., Li Z., Liu L., Wang X., Lu Y., Sterbinsky G.E., Liu S., Zheng L., Liu J., Liu D., Wang J., Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity, Nat. Commun., 13, pp. 1-11, (2022)
[2]  
Qi Y., Zhang Y., Yang L., Zhao Y., Zhu Y., Jiang H., Li C., Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation, Nat. Commun., 13, pp. 1-11, (2022)
[3]  
Zhu B., Dong B., Wang F., Yang Q., He Y., Zhang C., Jin P., Feng L., Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides, Nat. Commun., 14, (2023)
[4]  
Dubale A.A., Zheng Y., Wang H., Hubner R., Li Y., Yang J., Zhang J., Sethi N.K., He L., Zheng Z., Liu W., High‐performance bismuth‐doped nickel aerogel electrocatalyst for the methanol oxidation reaction, Angew. Chem. Int. Ed., 59, pp. 13891-13899, (2020)
[5]  
Wang X., Xi S., Lee W.S.V., Huang P., Cui P., Zhao L., Hao W., Zhao X., Wang Z., Wu H., Wang H., Diao C., Borgna A., Du Y., Yu Z.G., Pennycook S., Xue J., Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon, Nat. Commun., 11, (2020)
[6]  
Xia Z., Zhang X., Sun H., Wang S., Sun G., Recent advances in multi-scale design and construction of materials for direct methanol fuel cells, Nano Energy, 65, (2019)
[7]  
Fan Y., Yang X., Wei E., Dong Y., Gao H., Luo X., Yang W., Promoted electro-oxidation kinetics in chromium-doped α‑Ni(OH)<sub>2</sub> nanosheets for efficient selective conversion of methanol to formate, Appl. Catal. B Environ., 345, (2024)
[8]  
Phan V.T.T., Nguyen Q.P., Wang B., Burgess I.J., Oxygen vacancies alter methanol oxidation pathways on NiOOH, J. Am. Chem. Soc., 146, pp. 4830-4841, (2024)
[9]  
Cheng H., Dong B., Liu Q., Wang F., Direct electrocatalytic methanol oxidation on MoO<sub>3</sub>/Ni(OH)<sub>2</sub>: Exploiting synergetic effect of adjacent Mo and Ni, J. Am. Chem. Soc., 145, pp. 26858-26862, (2023)
[10]  
Xiao H., Wang W., Zhao M., Fu Z., Bai M., Zhang L., Zhang J., Luo E., Zhang J., Wu H., Jia J., Insights into synergetic modulation of nickel sites over graphene by introducing tungsten and light for efficient methanol electrooxidation, Chem. Eng. J., 490, (2024)