VOICECRAFT: Zero-Shot Speech Editing and Text-to-Speech in theWild

被引:0
作者
Peng, Puyuan [1 ]
Huang, Po-Yao [2 ]
Le, Shang-Wen [2 ]
Mohamed, Abdelrahman [3 ]
Harwath, David [1 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
[2] Meta, FAIR, Menlo Pk, CA USA
[3] Rembrand, Palo Alto, CA USA
来源
PROCEEDINGS OF THE 62ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1: LONG PAPERS | 2024年
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce VOICECRAFT, a token infilling neural codec language model, that achieves state-of-the-art performance on both speech editing and zero-shot text-to-speech (TTS) on audiobooks, internet videos, and podcasts1. VOICECRAFT employs a Transformer decoder architecture and introduces a token rearrangement procedure that combines causal masking and delayed stacking to enable generation within an existing sequence. On speech editing tasks, VOICECRAFT produces edited speech that is nearly indistinguishable from unedited recordings in terms of naturalness, as evaluated by humans; for zero-shot TTS, our model outperforms prior SotA models including VALLE and the popular commercial model XTTS v2. Crucially, the models are evaluated on challenging and realistic datasets, that consist of diverse accents, speaking styles, recording conditions, and background noise and music, and our model performs consistently well compared to other models and real recordings. In particular, for speech editing evaluation, we introduce a high quality, challenging, and realistic dataset named REALEDIT. We encourage readers to listen to the demos at https: //jasonppy.github.io/VoiceCraft_web.
引用
收藏
页码:12442 / 12462
页数:21
相关论文
共 68 条
[1]  
Aghajanyan A, 2022, Arxiv, DOI [arXiv:2201.07520, 10.48550/arXiv.2201.07520, DOI 10.48550/ARXIV.2201.07520]
[2]  
Agostinelli A., 2023, arXiv
[3]  
[Anonymous], 2017, The LJ Speech Dataset
[4]  
Bai H, 2022, PR MACH LEARN RES
[5]  
Bavarian M, 2022, Arxiv, DOI arXiv:2207.14255
[6]  
Bernard M., 2021, Journal of Open Source Software, V6, P3958, DOI DOI 10.21105/JOSS.03958
[7]  
Borsos Z., 2023, arXiv
[8]   AudioLM: A Language Modeling Approach to Audio Generation [J].
Borsos, Zalan ;
Marinier, Raphael ;
Vincent, Damien ;
Kharitonov, Eugene ;
Pietquin, Olivier ;
Sharifi, Matt ;
Roblek, Dominik ;
Teboul, Olivier ;
Grangier, David ;
Tagliasacchi, Marco ;
Zeghidour, Neil .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 :2523-2533
[9]  
Borsos Zaln, INTERSPEECH
[10]  
Casanova E, 2022, PR MACH LEARN RES