Revised logarithmic Sobolev inequalities of fractional order

被引:0
作者
Chatzakou, Marianna [1 ]
Ruzhansky, Michael [1 ,2 ]
机构
[1] Univ Ghent, Dept Math Anal Log & Discrete Math, Krijgslaan 28,Bldg S8, B-9000 Ghent, Belgium
[2] Queen Mary Univ London, Sch Math Sci, London, England
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2024年 / 197卷
基金
比利时弗兰德研究基金会; 英国工程与自然科学研究理事会;
关键词
Logarithmic Sobolev inequality; Higher order derivatives; Fractional Laplacian;
D O I
10.1016/j.bulsci.2024.103530
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short note we prove the logarithmic Sobolev inequality with derivatives of fractional order on Rn with an explicit expression for the constant. Namely, we show that for all 0<s<n2 and a>0 we have the inequality integral(n)(R)|f(x)|(2)log (|f(x)|(2)||f|| (2)L2(R-n))dx+n/s(1+log a)||f||L-2(R-n)<= C(n,s,a)||(-Delta)(s/2)f|| L-2(2)(R-n) with an explicit C(n,s,a) depending on a, the order s, and the dimension n, and investigate the behaviour of C(n,s,a) for large n. Notably, for large n and when s=1, the constant C(n,1,a) is asymptotically the same as the sharp constant of Lieb and Loss that was computed in [13]. Moreover, we prove a similar type inequality for functions f is an element of L-q(Rn)boolean AND W1,p(R-n) whenever 1<p<n and p<q <= p(n-1)/n-p. (c) 2024 Elsevier rights are reserved, including those for text and data mining, Al training, and similar technologies.
引用
收藏
页数:9
相关论文
共 16 条
[1]  
Aubin T., 1998, SOME NONLINEAR PROBL
[2]  
Aubin T., 1976, J DIFFER GEOM, V11, P573
[3]   Logarithmic Sobolev-Type Inequalities on Lie Groups [J].
Chatzakou, Marianna ;
Kassymov, Aidyn ;
Ruzhansky, Michael .
JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (09)
[4]  
Chatzakou M, 2024, OSAKA J MATH, V61, P79
[5]  
Chatzakou M, 2023, Arxiv, DOI arXiv:2310.00992
[6]   On logarithmic Sobolev inequalities for higher order fractional derivatives [J].
Cotsiolis, A ;
Tavoularis, NK .
COMPTES RENDUS MATHEMATIQUE, 2005, 340 (03) :205-208
[7]   Best constants for Sobolev inequalities for higher order fractional derivatives [J].
Cotsiolis, A ;
Tavoularis, NK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) :225-236
[8]   The optimal Euclidean Lp-Sobolev logarithmic inequality [J].
Del Pino, M ;
Dolbeault, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 197 (01) :151-161
[9]  
Djadli Z, 2000, DUKE MATH J, V104, P129
[10]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083