Machine Learning-Assisted Prediction and Control of Bandgap for Organic-Inorganic Metal Halide Perovskites

被引:2
作者
Gou, Fuchun [1 ]
Ma, Zhu [1 ,2 ,4 ]
Yang, Qiang [1 ]
Du, Hao [2 ]
Li, Yixian [2 ]
Zhang, Qian [2 ]
You, Wei [2 ]
Chen, Yi [2 ]
Du, Zhuowei [2 ]
Yang, Junbo [2 ]
He, Nan [1 ]
Luo, Junxin [1 ]
Liu, Zichen [2 ]
Tian, Zilu [1 ]
Mao, Maozhu [1 ]
Liu, Kai [2 ]
Yu, Jian [2 ]
Zhang, Anan [1 ]
Min, Fan [5 ]
Sun, Kuan [6 ]
Xuan, Ningqiang [3 ]
机构
[1] Southwest Petr Univ, Sch Elect Engn & Informat, Chengdu 610500, Peoples R China
[2] Southwest Petr Univ, Sch New Energy & Mat, Chengdu 610500, Peoples R China
[3] Petrochina Changqing Oilfield Co, Xian 710000, Peoples R China
[4] Tianfu Yongxing Lab, Chengdu 610213, Peoples R China
[5] Southwest Petr Univ, Inst Artificial Intelligence, Sch Comp Sci & Software Engn, Chengdu 610500, Peoples R China
[6] Chongqing Univ, Sch Energy & Power Engn, Key Lab Low Grade Energy Utilizat Technol & Syst M, Chongqing 400044, Peoples R China
关键词
band gap prediction; machine learning model; outlier removal; chemical composition adjustment strategy; perovskite solar cell; SOLAR-CELLS; EFFICIENT; STABILITY;
D O I
10.1021/acsami.5c00218
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Perovskite materials have wide application prospects in many fields due to their tunable and designable band gap characteristics. Machine learning has obvious advantages in quickly and effectively discovering new materials. However, noise interference within data sets frequently hinders the ability of traditional predictive and evaluative techniques to satisfy practical requirements. This study introduces an outlier removal strategy to examine the influence of varying degrees of outlier exclusion on the generalization performance of the learning model followed by the determination of the optimal configuration. The results indicated that the gradient boosting regression tree (GBRT) algorithm yielded a mean absolute error (MAE) of 0.0287, a mean squared error (MSE) of 0.0014, a root mean squared error (RMSE) of 0.0377, and an R-squared (R 2) value of 0.979, demonstrating superior performance with a minimal prediction error compared to alternative algorithms. Moreover, the Shapley Additive Explanation (SHAP) method was utilized to elucidate the impact of various chemical compositions on the desired band gap, revealing that the ratio of I exerts the most significant influence, with the Pb, Br, and Sn ratios exerting a subsequent effect. We further investigated the effect of different chemical composition ratios on the band gap, and the experimental results show that individual elements maintain stability within particular proportionate bounds, thereby offering critical data to underpin band gap control strategies. This study provides new valuable insights for realizing accurate prediction and effective control of band gaps.
引用
收藏
页码:18383 / 18393
页数:11
相关论文
共 46 条
[1]   Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals [J].
Abdelhady, Ahmed L. ;
Saidaminov, Makhsud I. ;
Murali, Banavoth ;
Adinolfi, Valerio ;
Voznyy, Oleksandr ;
Katsiev, Khabiboulakh ;
Alarousu, Erkki ;
Comin, Riccardo ;
Dursun, Ibrahim ;
Sinatra, Lutfan ;
Sargent, Edward H. ;
Mohammed, Omar F. ;
Bakr, Osman M. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (02) :295-301
[2]   Pathways toward commercial perovskite/silicon tandem photovoltaics [J].
Aydin, Erkan ;
Allen, Thomas G. ;
De Bastiani, Michele ;
Razzaq, Arsalan ;
Xu, Lujia ;
Ugur, Esma ;
Liu, Jiang ;
De Wolf, Stefaan .
SCIENCE, 2024, 383 (6679) :162-+
[3]   Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation [J].
Bush, Kevin A. ;
Frohna, Kyle ;
Prasanna, Rohit ;
Beal, Rachel E. ;
Leijtens, Tomas ;
Swifter, Simon A. ;
McGehee, Michael D. .
ACS ENERGY LETTERS, 2018, 3 (02) :428-435
[4]   Grain Engineering for Perovskite/Silicon Monolithic Tandem Solar Cells with Efficiency of 25.4% [J].
Chen, Bo ;
Yu, Zhengshan ;
Liu, Kong ;
Zheng, Xiaopeng ;
Liu, Ye ;
Shi, Jianwei ;
Spronk, Derrek ;
Rudd, Peter N. ;
Holman, Zachary ;
Huang, Jinsong .
JOULE, 2019, 3 (01) :177-190
[5]   Application of machine learning in perovskite materials and devices: A review [J].
Chen, Ming ;
Yin, Zhenhua ;
Shan, Zhicheng ;
Zheng, Xiaokai ;
Liu, Lei ;
Dai, Zhonghua ;
Zhang, Jun ;
Liu, Shengzhong ;
Xu, Zhuo .
JOURNAL OF ENERGY CHEMISTRY, 2024, 94 :254-272
[6]   Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing [J].
Correa-Baena, Juan-Pablo ;
Hippalgaonkar, Kedar ;
van Duren, Jeroen ;
Jaffer, Shaffiq ;
Chandrasekhar, Vijay R. ;
Stevanovic, Vladan ;
Wadia, Cyrus ;
Guha, Supratik ;
Buonassisi, Tonio .
JOULE, 2018, 2 (08) :1410-1420
[8]   Prediction of Organic-Inorganic Hybrid Perovskite Band Gap by Multiple Machine Learning Algorithms [J].
Feng, Shun ;
Wang, Juan .
MOLECULES, 2024, 29 (02)
[9]   Efficient wide band gap double cation - double halide perovskite solar cells [J].
Forgacs, David ;
Perez-del-Rey, Daniel ;
Avila, Jorge ;
Momblona, Cristina ;
Gil-Escrig, Lidon ;
Danekamp, Benedikt ;
Sessolo, Michele ;
Bolink, Henk J. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (07) :3203-3207
[10]   Machine Learning for Predicting the Band Gaps of ABX3 Perovskites from Elemental Properties [J].
Gladkikh, Vladislav ;
Kim, Dong Yeon ;
Hajibabaei, Amir ;
Jana, Atanu ;
Myung, Chang Woo ;
Kim, Kwang S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (16) :8905-8918