AI-enhanced Healthcare IoT System: Advanced ML Detection and Classification Algorithms for Real-Time Cardiovascular Monitoring

被引:0
作者
Christodoulou, Lakis [1 ]
Chari, Andreas [1 ]
Georgiades, Michael [2 ,3 ]
机构
[1] Biomed Med Syst, R&D Technol & Innovat, Paphos, Cyprus
[2] Neapolis Univ, CS, ISLab, Paphos, Cyprus
[3] Infostrada Commun, Paphos, Cyprus
来源
2024 20TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SMART SYSTEMS AND THE INTERNET OF THINGS, DCOSS-IOT 2024 | 2024年
关键词
Electro-Cardio-Gram (ECG); Vital Signs; AI; Machine learning (ML); IoT; IoMT; adaptive digital signal processing (DSP); Smart Healthcare Monitoring (SHM); Detection; Classification; PQRST; System on Chip (SoC); ARTIFICIAL-INTELLIGENCE; INTERNET; THINGS;
D O I
10.1109/DCOSS-IoT61029.2024.00071
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Cardiovascular diseases (CVDs), including coronary heart disease, cerebrovascular disease, rheumatic heart disease, and other conditions affecting the heart and blood vessels, are identified by both the Pan American Health Organization and the World Health Organization as the leading cause of global mortality, underscoring their significant impact on health worldwide. In this paper we utilize emerging technologies in the fields of Internet of Medical Things (IoMT) and AI/Machine Learning (ML) and propose an end-to-end prototype platform for real-time detection, classification, prediction, and monitoring of cardiovascular anomalies. In addition we introduce Cardio-ECG-Heart Arrhythmia Algorithms using advanced AI/ML, combining mathematical-statistical and computational techniques to intelligently detect critical conditions related to CVDs and arrhythmias. The proposed innovative AI/ML Peak Detection algorithm based on adaptive thresholds, coupled with the ML Decision Tree Classification algorithm, has been tested with numerous ECG signals and exhibits remarkable performance, achieving exceptional precision, accuracy, sensitivity, specificity, and F1 Score rates between 99% and 100%.
引用
收藏
页码:440 / 449
页数:10
相关论文
共 26 条
[1]   The application of internet of things in healthcare: a systematic literature review and classification [J].
Ahmadi, Hossein ;
Arji, Goli ;
Shahmoradi, Leila ;
Safdari, Reza ;
Nilashi, Mehrbakhsh ;
Alizadeh, Mojtaba .
UNIVERSAL ACCESS IN THE INFORMATION SOCIETY, 2019, 18 (04) :837-869
[2]   Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications [J].
Al-Fuqaha, Ala ;
Guizani, Mohsen ;
Mohammadi, Mehdi ;
Aledhari, Mohammed ;
Ayyash, Moussa .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2015, 17 (04) :2347-2376
[3]   IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey [J].
Alshamrani, Mazin .
JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (08) :4687-4701
[4]  
American Heart Association, Clinical Standards
[5]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[6]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[7]  
Awotunde JB, 2021, Hybrid Artificial Intelligence and IoT in Healthcare, P201, DOI 10.1007/978-981-16-2972-310
[8]  
Bhoi A. K., 2021, Hybrid Artificial Intelligence and IoT in Healthcare
[9]   Artificial Intelligence and Machine Learning in Arrhythmias and Cardiac Electrophysiology [J].
Feeny, Albert K. ;
Chung, Mina K. ;
Madabhushi, Anant ;
Attia, Zachi I. ;
Cikes, Maja ;
Firouznia, Marjan ;
Friedman, Paul A. ;
Kalscheur, Matthew M. ;
Kapa, Suraj ;
Narayan, Sanjiv M. ;
Noseworthy, Peter A. ;
Passman, Rod S. ;
Perez, Marco V. ;
Peters, Nicholas S. ;
Piccini, Jonathan P. ;
Tarakji, Khaldoun G. ;
Thomas, Suma A. ;
Trayanova, Natalia A. ;
Turakhia, Mintu P. ;
Wang, Paul J. .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2020, 13 (08) :E007952
[10]   Artificial Intelligence, Wearables and Remote Monitoring for Heart Failure: Current and Future Applications [J].
Gautam, Nitesh ;
Ghanta, Sai Nikhila ;
Mueller, Joshua ;
Mansour, Munthir ;
Chen, Zhongning ;
Puente, Clara ;
Ha, Yu Mi ;
Tarun, Tushar ;
Dhar, Gaurav ;
Sivakumar, Kalai ;
Zhang, Yiye ;
Abu Halimeh, Ahmed ;
Nakarmi, Ukash ;
Al-Kindi, Sadeer ;
DeMazumder, Deeptankar ;
Al'Aref, Subhi J. .
DIAGNOSTICS, 2022, 12 (12)