Fast Disentangled Slim Tensor Learning for Multi-View Clustering

被引:0
|
作者
Xu, Deng [1 ]
Zhang, Chao [1 ]
Li, Zechao [2 ]
Chen, Chunlin [1 ]
Li, Huaxiong [1 ]
机构
[1] Nanjing Univ, Dept Control Sci & Intelligence Engn, Nanjing 210093, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210014, Peoples R China
基金
中国国家自然科学基金;
关键词
Tensors; Correlation; Semantics; Vectors; Static VAr compensators; Stacking; Principal component analysis; Fast Fourier transforms; Computational modeling; Bipartite graph; Multi-view clustering; representation disentanglement; slim tensor learning;
D O I
10.1109/TMM.2024.3521754
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Tensor-based multi-view clustering has recently received significant attention due to its exceptional ability to explore cross-view high-order correlations. However, most existing methods still encounter some limitations. (1) Most of them explore the correlations among different affinity matrices, making them unscalable to large-scale data. (2) Although some methods address it by introducing bipartite graphs, they may result in sub-optimal solutions caused by an unstable anchor selection process. (3) They generally ignore the negative impact of latent semantic-unrelated information in each view. To tackle these issues, we propose a new approach termed fast Disentangled Slim Tensor Learning (DSTL) for multi-view clustering. Instead of focusing on the multi-view graph structures, DSTL directly explores the high-order correlations among multi-view latent semantic representations based on matrix factorization. To alleviate the negative influence of feature redundancy, inspired by robust PCA, DSTL disentangles the latent low-dimensional representation into a semantic-unrelated part and a semantic-related part for each view. Subsequently, two slim tensors are constructed with tensor-based regularization. To further enhance the quality of feature disentanglement, the semantic-related representations are aligned across views through a consensus alignment indicator. Our proposed model is computationally efficient and can be solved effectively. Extensive experiments demonstrate the superiority and efficiency of DSTL over state-of-the-art approaches.
引用
收藏
页码:1254 / 1265
页数:12
相关论文
共 50 条
  • [1] Learning latent disentangled embeddings and graphs for multi-view clustering
    Zhang, Chao
    Chen, Haoxing
    Li, Huaxiong
    Chen, Chunlin
    PATTERN RECOGNITION, 2024, 156
  • [2] Essential Tensor Learning for Multi-View Spectral Clustering
    Wu, Jianlong
    Lin, Zhouchen
    Zha, Hongbin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (12) : 5910 - 5922
  • [3] Robust Tensor Learning for Multi-View Spectral Clustering
    Xie, Deyan
    Li, Zibao
    Sun, Yingkun
    Song, Wei
    ELECTRONICS, 2024, 13 (11)
  • [4] Tensor Learning Induced Multi-View Spectral Clustering
    Chen, Man-Sheng
    Cai, Xiao-Sha
    Lin, Jia-Qi
    Wang, Chang-Dong
    Huang, Dong
    Lai, Jian-Huang
    Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (01): : 52 - 68
  • [5] Flexible Tensor Learning for Multi-View Clustering With Markov Chain
    Qin, Yalan
    Tang, Zhenjun
    Wu, Hanzhou
    Feng, Guorui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1552 - 1565
  • [6] Orthogonal multi-view tensor-based learning for clustering
    Ma, Shuangxun
    Liu, Yuehu
    Liu, Guangcan
    Zheng, Qinghai
    Zhang, Chi
    NEUROCOMPUTING, 2022, 500 : 592 - 603
  • [7] Nonconvex Tensor Hypergraph Learning for Multi-view Subspace Clustering
    Yao, Xue
    Li, Min
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IV, 2024, 14428 : 39 - 51
  • [8] Sparse Graph Tensor Learning for Multi-View Spectral Clustering
    Chen, Man-Sheng
    Li, Zhi-Yuan
    Lin, Jia-Qi
    Wang, Chang-Dong
    Huang, Dong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (05): : 3534 - 3543
  • [9] Sparse Graph Tensor Learning for Multi-View Spectral Clustering
    Chen, Man-Sheng
    Li, Zhi-Yuan
    Lin, Jia-Qi
    Wang, Chang-Dong
    Huang, Dong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, : 1 - 10
  • [10] Robust Tensor Subspace Learning for Incomplete Multi-View Clustering
    Liang, Cheng
    Wang, Daoyuan
    Zhang, Huaxiang
    Zhang, Shichao
    Guo, Fei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6934 - 6948