Advancements in functionalized high-performance separators for lithium-sulfur batteries

被引:1
|
作者
Xia, Shuang [1 ,2 ,3 ]
Xu, Xuming [4 ]
Wu, Wenzhuo [5 ]
Chen, Yuhui [4 ]
Liu, Lili [4 ]
Wang, Gaojun [1 ]
Fu, Lijun [4 ]
Zhang, Qiangyu [6 ]
Wang, Tao [2 ,3 ]
He, Jiarui [2 ,3 ]
Wu, Yuping [2 ,3 ,4 ]
机构
[1] Shaoxing Univ, Coll Chem & Chem Engn, Shaoxing 312000, Peoples R China
[2] South East Univ, Sch Energy & Environm, Confucius Energy Storage Lab, Nanjing 211189, Peoples R China
[3] South East Univ, Energy Storage Ctr Z, Nanjing 211189, Peoples R China
[4] Nanjing Tech Univ, Sch Energy Sci & Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Peoples R China
[5] Imperial Coll London, Dept Math, South Kensington Campus, London SW7 2AZ, England
[6] Sichuan Univ, Coll Mat Sci & Engn, Engn Res Ctr Alternat Energy Mat & Devices, Minist Educ, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-S batteries; Modified separators; Electrospun separators; Polymer electrolyte separators; Shuttle effect; Lithium anode; GEL POLYMER ELECTROLYTE; CARBON-MODIFIED SEPARATOR; TRAPPING POLYSULFIDES; IONIC-CONDUCTIVITY; ORGANIC FRAMEWORK; COATED SEPARATOR; OXIDE MEMBRANE; HIGH-CAPACITY; METAL; GRAPHENE;
D O I
10.1016/j.mser.2025.100924
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium-sulfur batteries as a promising candidate for the next generation of battery systems face major challenges in their commercialization process, primarily due to the irreversible loss of active sulfur substances during the operation of the battery and the instability of the lithium anode. As a critical component of lithium-sulfur batteries, the separator not only separates the cathodes and anodes to prevent battery short circuits but also provides a pathway for ion transport. Constructing functionalized high-performance separators can effectively suppress the ' shuttle effect' and stabilize the lithium anodes, thereby enhancing the performance of lithium-sulfur batteries and accelerating their practical application process. In recent years, research on separators for lithium- sulfur batteries has been increasing. However, existing reviews on lithium-sulfur battery separators seem to be inadequate, making it difficult to provide effective guidance for researchers. To address this, this review comprehensively elaborates on the research work of functionalized separators from three perspectives: modified separators, electrospun separators, and polymer electrolyte separators. In addition, we have conducted a preliminary evaluation of the staged applications of these three types of separators. This review not only provides directions for subsequent scientific research work but also offers effective guidance for enterprises in the production of functionalized high-performance separators.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Metal-Organic Frameworks Functionalized Separators for Lithium-Sulfur Batteries
    Chong, Yu-Liang
    Zhao, Dong-Dong
    Wang, Bing
    Feng, Li
    Li, Si-Jun
    Shao, Lan-Xing
    Tong, Xin
    Du, Xuan
    Cheng, H.
    Zhuang, Jin-Liang
    CHEMICAL RECORD, 2022, 22 (10)
  • [22] Tri-functionalized polypropylene separator by rGO/MoO2 composite for high-performance lithium-sulfur batteries
    Xu, Kun
    Liang, Xin
    Wang, Lu-Lu
    Wang, Yong
    Yun, Ju-Feng
    Sun, Yi
    Xiang, Hong-Fa
    RARE METALS, 2021, 40 (10) : 2810 - 2818
  • [23] Fabrication of MXene/MOF composite separators for high performance lithium-sulfur batteries
    Wang, Yinchuan
    Niu, Rui
    Chen, Liyi
    Yang, Yu
    Yu, Haizhou
    Qiu, Xiaoyan
    CHEMICAL ENGINEERING JOURNAL, 2025, 512
  • [24] Phosphorene as a Polysulfide Immobilizer and Catalyst in High-Performance Lithium-Sulfur Batteries
    Li, Lu
    Chen, Long
    Mukherjee, Sankha
    Gao, Jian
    Sun, Hao
    Liu, Zhibo
    Ma, Xiuliang
    Gupta, Tushar
    Singh, Chandra Veer
    Ren, Wencai
    Cheng, Hui-Ming
    Koratkar, Nikhil
    ADVANCED MATERIALS, 2017, 29 (02)
  • [25] Boron nitride nanosheets/carbon fibers-modified separators for high-performance lithium-sulfur batteries
    Gao He-Jun
    Yang Jing-Wen
    Qiao Jia-Xiao
    Qiao Wei
    Cao Chao-Chao
    Li Ze-Xia
    Wang Peng
    Tang Cheng-Chun
    Xue Yan-Ming
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2023, 39 (06) : 1139 - 1150
  • [26] Inhibiting polysulfides with PDA/PEI-functionalized separators for stable lithium-sulfur batteries
    Pei, Cunbao
    Li, Jingde
    Lv, Zezhong
    Wang, Huanmin
    Dong, Wei
    Yao, Yongyi
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (08) : 10099 - 10110
  • [27] A Compact Nanoconfined Sulfur Cathode for High-Performance Lithium-Sulfur Batteries
    Li, Zhen
    Guan, Bu Yuan
    Zhang, Jintao
    Lou, Xiong Wen
    JOULE, 2017, 1 (03) : 576 - 587
  • [28] Fabrication of a sandwich structured electrode for high-performance lithium-sulfur batteries
    Ding, Bing
    Xu, Guiyin
    Shen, Laifa
    Nie, Ping
    Hu, Pengfei
    Dou, Hui
    Zhang, Xiaogang
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (45) : 14280 - 14285
  • [29] Fibrous organosulfur cathode materials with high bonded sulfur for high-performance lithium-sulfur batteries
    Weret, Misganaw Adigo
    Kuo, Chung-Feng Jeffrey
    Su, Wei-Nien
    Zeleke, Tamene Simachew
    Huang, Chen-Jui
    Sahalie, Niguse Aweke
    Zegeye, Tilahun Awoke
    Wondimkun, Zewdu Tadesse
    Fenta, Fekadu Wubatu
    Jote, Bikila Alemu
    Tsai, Meng-Che
    Hwang, Bing Joe
    JOURNAL OF POWER SOURCES, 2022, 541
  • [30] Multifunctional Lithium Phytate/Carbon Nanotube Double-Layer-Modified Separators for High-Performance Lithium-Sulfur Batteries
    Hu, Jing
    Wang, Zhenyu
    Yuan, Huimin
    Yang, Mingyang
    Chen, Jingjing
    Fu, Xuelian
    Wang, Zhiqiang
    Luo, Wen
    Huang, Yongcong
    Zhang, Fangchang
    Liu, Chen
    Lu, Zhouguang
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (30) : 39215 - 39224