Higher genus polylogarithms on families of Riemann surfaces

被引:0
作者
Ichikawa, Takashi [1 ]
机构
[1] Saga Univ, Fac Sci & Engn, Dept Math, Saga 8408502, Japan
基金
日本学术振兴会;
关键词
STABLE CURVES; MODULI SPACE; PROJECTIVITY;
D O I
10.1016/j.nuclphysb.2025.116836
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct polylogarithms on families of pointed Riemann surfaces of any genus which describe monodromies of nilpotent meromorphic connections with simple poles on these families. Furthermore, we show that the polylogarithms are computable as power series in deformation parameters and their logarithms associated with these families whose coefficients are essentially expressed by multiple zeta values.
引用
收藏
页数:16
相关论文
共 38 条
[11]   Elliptic multiple zeta values and one-loop superstring amplitudes [J].
Broedel, Johannes ;
Mafra, Carlos R. ;
Matthes, Nils ;
Schlotterer, Oliver .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (07)
[12]  
Brown FCS, 2009, ANN SCI ECOLE NORM S, V42, P371
[13]  
Brown FCS, 2013, Arxiv, DOI arXiv:1110.6917
[14]  
Calaque D, 2009, PROG MATH, V269, P165, DOI 10.1007/978-0-8176-4745-2_5
[15]  
D'Hoker E, 2025, Arxiv, DOI arXiv:2501.07640
[16]  
D'Hoker E, 2025, Arxiv, DOI arXiv:2306.08644
[17]  
Deligne P., 1969, I HAUTES ETUDES SCI, V36, P75
[18]  
Enriquez B., 2016, arXiv:1301.3042, V144, P395, DOI [DOI 10.24033/BSMF.2718, 10.24033/bsmf.2718]
[19]  
Enriquez B, 2024, Arxiv, DOI arXiv:2212.03119
[20]  
Enriquez B, 2021, Arxiv, DOI arXiv:2110.09341