Higher genus polylogarithms on families of Riemann surfaces

被引:0
作者
Ichikawa, Takashi [1 ]
机构
[1] Saga Univ, Fac Sci & Engn, Dept Math, Saga 8408502, Japan
基金
日本学术振兴会;
关键词
STABLE CURVES; MODULI SPACE; PROJECTIVITY;
D O I
10.1016/j.nuclphysb.2025.116836
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct polylogarithms on families of pointed Riemann surfaces of any genus which describe monodromies of nilpotent meromorphic connections with simple poles on these families. Furthermore, we show that the polylogarithms are computable as power series in deformation parameters and their logarithms associated with these families whose coefficients are essentially expressed by multiple zeta values.
引用
收藏
页数:16
相关论文
共 38 条
  • [1] Alekseev A, 2023, Arxiv, DOI arXiv:1804.09566
  • [2] Higher genus Kashiwara-Vergne problems and the Goldman-TuraevLie bialgebra
    Alekseev, Anton
    Kawazumi, Nariya
    Kuno, Yusuke
    Naef, Florian
    [J]. COMPTES RENDUS MATHEMATIQUE, 2017, 355 (02) : 123 - 127
  • [3] [Anonymous], 2002, Indra's Pearls: The Vision of Felix Klein
  • [4] Bakalov B., 2001, University Lecture Series, V21
  • [5] Multiple zeta values in deformation quantization
    Banks, Peter
    Panzer, Erik
    Pym, Brent
    [J]. INVENTIONES MATHEMATICAE, 2020, 222 (01) : 79 - 159
  • [6] Baune K, 2024, Arxiv, DOI arXiv:2406.10051
  • [7] The unequal mass sunrise integral expressed through iterated integrals on (M)over-bar1,3
    Bogner, Christian
    Mueller-Stach, Stefan
    Weinzierl, Stefan
    [J]. NUCLEAR PHYSICS B, 2020, 954
  • [8] Broedel J, 2022, COMMUN NUMBER THEORY, V16, P75
  • [9] Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series
    Broedel, Johannes
    Duhr, Claude
    Dulat, Falko
    Penante, Brenda
    Tancredi, Lorenzo
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):
  • [10] Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism
    Broedel, Johannes
    Duhr, Claude
    Dulat, Falko
    Tancredi, Lorenzo
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05):