A 3.3 kV SiC Semi-Superjunction MOSFET with Trench Sidewall Implantations

被引:0
作者
Boccarossa, Marco [1 ,2 ]
Melnyk, Kyrylo [1 ]
Renz, Arne Benjamin [1 ]
Gammon, Peter Michael [1 ]
Kotagama, Viren [1 ]
Shah, Vishal Ajit [1 ]
Maresca, Luca [2 ]
Irace, Andrea [2 ]
Antoniou, Marina [1 ]
机构
[1] Univ Warwick, Sch Engn, Coventry CV4 7AL, Warwickshire, England
[2] Univ Naples Feder II, Dept Elect Engn & Informat Technol, Via Claudio 21, I-80125 Naples, Italy
关键词
SiC MOSFET; superjunction; semi-superjunction; trench etching; sidewall implantation; tilted trench; HIGH-TEMPERATURE; ON-RESISTANCE; TRANSISTOR;
D O I
10.3390/mi16020188
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Superjunction (SJ) technology offers a promising solution to the challenges faced by silicon carbide (SiC) Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) operating at high voltages (>3 kV). However, the fabrication of SJ devices presents significant challenges due to fabrication complexity. This paper presents a comprehensive analysis of a feasible and easy-to-fabricate semi-superjunction (SSJ) design for 3.3 kV SiC MOSFETs. The proposed approach utilizes trench etching and sidewall implantation, with a tilted trench to facilitate the implantation process. Through Technology Computer-Aided Design (TCAD) simulations, we investigate the effects of the p-type sidewall on the charge balance and how it affects key performance characteristics, such as breakdown voltage (BV) and on-state resistance (RDS-ON). In particular, both planar gate (PSSJ) and trench gate (TSSJ) designs are simulated to evaluate their performance improvements over conventional planar MOSFETs. The PSSJ design achieves a 2.5% increase in BV and a 48.7% reduction in RDS-ON, while the TSSJ design further optimizes these trade-offs, with a 3.1% improvement in BV and a significant 64.8% reduction in RDS-ON compared to the benchmark. These results underscore the potential of tilted trench SSJ designs to significantly enhance the performance of SiC SSJ MOSFETs for high-voltage power electronics while simplifying fabrication and lowering costs.
引用
收藏
页数:15
相关论文
共 32 条
[1]  
[Anonymous], 2019, Sentaurus Device User Guide, Synopsys
[2]  
Baba M, 2021, PROC INT SYMP POWER, P83, DOI 10.23919/ISPSD50666.2021.9452273
[3]   Optimization of 1700-V 4H-SiC Semi-Superjunction Schottky Rectifiers With Implanted P-Pillars for Practical Realization [J].
Baker, G. W. C. ;
Gammon, P. M. ;
Renz, A. B. ;
Vavasour, O. ;
Chan, C. W. ;
Qi, Y. ;
Dai, T. ;
Li, F. ;
Zhang, L. ;
Kotagama, V. ;
Shah, V. A. ;
Mawby, P. A. ;
Antoniou, M. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (04) :1924-1930
[4]   Optimization of 1700-V 4H-SiC Superjunction Schottky Rectifiers With Implanted P-Pillars for Practical Realization [J].
Baker, G. W. C. ;
Chan, C. ;
Renz, A. B. ;
Qi, Y. ;
Dai, T. ;
Li, F. ;
Shah, V. A. ;
Mawby, P. A. ;
Antoniou, M. ;
Gammon, P. M. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (07) :3497-3504
[5]  
Baliga B. J., 2022, Springer Handbook of Semiconductor Devices, P491
[6]   Substantial Improvement of the Short-circuit Capability of a 1.2 kV SiC MOSFET by a HfO2/SiO2 Ferroelectric Gate Stack [J].
Boccarossa, M. ;
Maresca, L. ;
Borghese, A. ;
Riccio, M. ;
Breglio, G. ;
Irace, A. ;
Salvatore, G. A. .
2024 36TH INTERNATIONAL SYMPOSIUM ON POWER SEMICONDUCTOR DEVICES AND IC S, ISPSD 2024, 2024, :88-91
[7]  
Cao Q., 2024, P INT C SIL CARB REL
[8]   Development of SiC Superjunction MOSFET: A Review [J].
Duan, Yuhan ;
Zhang, Yuan-Lan ;
Zhang, Jon Qingchun ;
Liu, Pan .
2022 19TH CHINA INTERNATIONAL FORUM ON SOLID STATE LIGHTING & 2022 8TH INTERNATIONAL FORUM ON WIDE BANDGAP SEMICONDUCTORS, SSLCHINA: IFWS, 2022, :13-17
[9]   Modelling CoolMOSC3 transistor characteristics in SPICE [J].
Gorecki, Krzysztof ;
Zarebski, Janusz .
INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2010, 23 (02) :127-139
[10]  
Harada S, 2018, INT EL DEVICES MEET