Enhanced 3-D Urban Scene Reconstruction and Point Cloud Densification Using Gaussian Splatting and Google Earth Imagery

被引:0
作者
Gao, Kyle [1 ]
Lu, Dening [1 ]
He, Hongjie [2 ]
Xu, Linlin [1 ]
Li, Jonathan [1 ,2 ]
Gong, Zheng [3 ]
机构
[1] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1, Canada
[3] Jimei Univ, Sch Comp Engn, Xiamen 361021, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2025年 / 63卷
关键词
Three-dimensional displays; Image reconstruction; Photogrammetry; Solid modeling; Point cloud compression; Neural radiance field; Geometry; Earth; Urban areas; Remote sensing; 3-D Gaussian splatting (3DGS); multiview-stereo (MVS); novel view synthesis; photogrammetry; point cloud; 3D; MODELS;
D O I
10.1109/TGRS.2025.3536169
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Three-dimensional urban scene reconstruction and modeling is a crucial research area. From a technical perspective, it is an interdisciplinary research area spanning computer vision, computer graphics, and photogrammetry. Its applications span across multiple disciplines including autonomous navigation with 3-D scene understanding, remote sensing/photogrammetry for the creation of 3-D maps from aerial/drone/satellite images, geographic information systems with urban digital twins, augmented and virtual reality with photorealistic scene reconstructions. Using Google Earth imagery, we create a 3-D Gaussian splatting (3DGS) model of the Waterloo region centered on the University of Waterloo, and are able to achieve view-synthesis results far exceeding previous 3-D view-synthesis results based on neural radiance fields (NeRFs)which we demonstrate in our benchmark. We also retrieve the 3-D geometry of the scene using the 3-D point cloud extracted from the 3DGS model, thereby reconstructing both the 3-D geometry and photorealistic lighting of the large-scale urban scene.
引用
收藏
页数:14
相关论文
共 60 条
  • [1] Alphabet Inc, 2015, Google earth studio
  • [2] Self-driving cars: A survey
    Badue, Claudine
    Guidolini, Ranik
    Carneiro, Raphael Vivacqua
    Azevedo, Pedro
    Cardoso, Vinicius B.
    Forechi, Avelino
    Jesus, Luan
    Berriel, Rodrigo
    Paixao, Thiago M.
    Mutz, Filipe
    Veronese, Lucas de Paula
    Oliveira-Santos, Thiago
    De Souza, Alberto F.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 165
  • [3] Bao Zhenyu, 2024, MM '24: Proceedings of the 32nd ACM International Conference on Multimedia, P10477, DOI 10.1145/3664647.3681298
  • [4] Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
    Barron, Jonathan T.
    Mildenhall, Ben
    Verbin, Dor
    Srinivasan, Pratul P.
    Hedman, Peter
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5460 - 5469
  • [5] Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields
    Barron, Jonathan T.
    Mildenhall, Ben
    Tancik, Matthew
    Hedman, Peter
    Martin-Brualla, Ricardo
    Srinivasan, Pratul P.
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 5835 - 5844
  • [6] BESL PJ, 1992, P SOC PHOTO-OPT INS, V1611, P586, DOI 10.1117/12.57955
  • [7] Applications of 3D City Models: State of the Art Review
    Biljecki, Filip
    Stoter, Jantien
    Ledoux, Hugo
    Zlatanova, Sisi
    Coeltekin, Arzu
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2015, 4 (04) : 2842 - 2889
  • [8] Markerless Vision-Based Augmented Reality for Urban Planning
    Carozza, Ludovico
    Tingdahl, David
    Bosche, Frederic
    van Gool, Luc
    [J]. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2014, 29 (01) : 2 - 17
  • [9] TensoRF: Tensorial Radiance Fields
    Chen, Anpei
    Xu, Zexiang
    Geiger, Andreas
    Yu, Jingyi
    Su, Hao
    [J]. COMPUTER VISION - ECCV 2022, PT XXXII, 2022, 13692 : 333 - 350
  • [10] Shadow Neural Radiance Fields for Multi-view Satellite Photogrammetry
    Derksen, Dawa
    Izzo, Dario
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 1152 - 1161