Enhanced 3-D Urban Scene Reconstruction and Point Cloud Densification Using Gaussian Splatting and Google Earth Imagery

被引:0
作者
Gao, Kyle [1 ]
Lu, Dening [1 ]
He, Hongjie [2 ]
Xu, Linlin [1 ]
Li, Jonathan [1 ,2 ]
Gong, Zheng [3 ]
机构
[1] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1, Canada
[3] Jimei Univ, Sch Comp Engn, Xiamen 361021, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2025年 / 63卷
关键词
Three-dimensional displays; Image reconstruction; Photogrammetry; Solid modeling; Point cloud compression; Neural radiance field; Geometry; Earth; Urban areas; Remote sensing; 3-D Gaussian splatting (3DGS); multiview-stereo (MVS); novel view synthesis; photogrammetry; point cloud; 3D; MODELS;
D O I
10.1109/TGRS.2025.3536169
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Three-dimensional urban scene reconstruction and modeling is a crucial research area. From a technical perspective, it is an interdisciplinary research area spanning computer vision, computer graphics, and photogrammetry. Its applications span across multiple disciplines including autonomous navigation with 3-D scene understanding, remote sensing/photogrammetry for the creation of 3-D maps from aerial/drone/satellite images, geographic information systems with urban digital twins, augmented and virtual reality with photorealistic scene reconstructions. Using Google Earth imagery, we create a 3-D Gaussian splatting (3DGS) model of the Waterloo region centered on the University of Waterloo, and are able to achieve view-synthesis results far exceeding previous 3-D view-synthesis results based on neural radiance fields (NeRFs)which we demonstrate in our benchmark. We also retrieve the 3-D geometry of the scene using the 3-D point cloud extracted from the 3DGS model, thereby reconstructing both the 3-D geometry and photorealistic lighting of the large-scale urban scene.
引用
收藏
页数:14
相关论文
共 60 条
[1]  
Alphabet Inc, 2015, Google earth studio
[2]   Self-driving cars: A survey [J].
Badue, Claudine ;
Guidolini, Ranik ;
Carneiro, Raphael Vivacqua ;
Azevedo, Pedro ;
Cardoso, Vinicius B. ;
Forechi, Avelino ;
Jesus, Luan ;
Berriel, Rodrigo ;
Paixao, Thiago M. ;
Mutz, Filipe ;
Veronese, Lucas de Paula ;
Oliveira-Santos, Thiago ;
De Souza, Alberto F. .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 165
[3]  
Bao Zhenyu, 2024, MM '24: Proceedings of the 32nd ACM International Conference on Multimedia, P10477, DOI 10.1145/3664647.3681298
[4]   Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields [J].
Barron, Jonathan T. ;
Mildenhall, Ben ;
Verbin, Dor ;
Srinivasan, Pratul P. ;
Hedman, Peter .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :5460-5469
[5]   Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields [J].
Barron, Jonathan T. ;
Mildenhall, Ben ;
Tancik, Matthew ;
Hedman, Peter ;
Martin-Brualla, Ricardo ;
Srinivasan, Pratul P. .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :5835-5844
[6]  
BESL PJ, 1992, P SOC PHOTO-OPT INS, V1611, P586, DOI 10.1117/12.57955
[7]   Applications of 3D City Models: State of the Art Review [J].
Biljecki, Filip ;
Stoter, Jantien ;
Ledoux, Hugo ;
Zlatanova, Sisi ;
Coeltekin, Arzu .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2015, 4 (04) :2842-2889
[8]   Markerless Vision-Based Augmented Reality for Urban Planning [J].
Carozza, Ludovico ;
Tingdahl, David ;
Bosche, Frederic ;
van Gool, Luc .
COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2014, 29 (01) :2-17
[9]   TensoRF: Tensorial Radiance Fields [J].
Chen, Anpei ;
Xu, Zexiang ;
Geiger, Andreas ;
Yu, Jingyi ;
Su, Hao .
COMPUTER VISION - ECCV 2022, PT XXXII, 2022, 13692 :333-350
[10]   Shadow Neural Radiance Fields for Multi-view Satellite Photogrammetry [J].
Derksen, Dawa ;
Izzo, Dario .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, :1152-1161