Meta-analysis and review of in silico methods in drug discovery - part 1: technological evolution and trends from big data to chemical space

被引:0
作者
Uzundurukan, Arife [1 ,2 ]
Nelson, Mark [3 ]
Teske, Christopher [4 ]
Islam, Mohamed Shahidul [5 ]
Mohamed, Elzagheid [6 ]
Christy, John Victor [7 ]
Martin, Holli-Joi [8 ]
Muratov, Eugene [9 ]
Glover, Samantha [10 ]
Fuoco, Domenico [2 ]
机构
[1] Univ Sherbrooke, Ctr Rech Acoust Signal Humain, 2500 Bd Univ, Sherbrooke, PQ J1K 2R1, Canada
[2] Ecole Polytech Montreal, Dept Chem Engn, 2500 Chem Polytech, Montreal, PQ H3T 1J4, Canada
[3] Piramal Pharm Solut Inc, Altoris Inc, 18655 Krause St,Riverview, San Diego, CA 48193 USA
[4] Trinity Hlth, Oncol Res Fac, Ann Arbor, MI USA
[5] BIOVANTEK Global, Qual & Compliance Dept, 10149 Chemin Cote Deliesse, Montreal, PQ, Canada
[6] Royal Commiss Jubail & Yanbu, Jubail Ind City, Saudi Arabia
[7] Novacab, R&D Dept, Ottawa, ON, Canada
[8] Univ North Carolina, UNC Eshelman Sch Pharm, Div Chem Biol & Med Chem, Lab Mol Modeling, Chapel Hill, NC 27599 USA
[9] Univ North Carolina, UNC Eshelman Sch Pharm, Chapel Hill, NC USA
[10] Quantum Business Solut, Beverly Hills, Los Angeles, CA USA
关键词
CAMBRIDGE STRUCTURAL DATABASE; HUMAN METABOLOME DATABASE; SELECTION; QSAR; CLASSIFICATION; PHARMACOLOGY; INFORMATION; CHEMISTRY; BIOLOGY; SYSTEM;
D O I
10.1038/s41397-025-00368-z
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
This review offers an overview of advanced in silico methods crucial for drug discovery, emphasizing their integration with data science, and investigates the effectiveness of data science, machine learning, and artificial intelligence via a thorough meta-analysis of existing technologies. This meta-analysis aims to rank these technologies based on their applications and accessibility of knowledge. Initially, a search strategy yielded 900 papers, which were then refined into two subsets: the top 300 most-cited papers since 2000 and papers selected for systematic review based on high impact. From these, 97 articles were identified for discussion, categorized by their influence on society. The focus remains on the qualitative impact of these disciplines rather than solely on metrics like new drug approvals. Ultimately, the review underscores the role of big data in enhancing our comprehension of drug candidate trajectories from development to commercialization, utilizing information stored in publicly available databases to chemical space.Graphical extrapolation of some keywords (Drug Discovery; Big Data; Database; Metadata) discussed in this article and their evolution (in terms of absolute items that are available) by time.
引用
收藏
页数:13
相关论文
共 97 条
  • [1] The Cambridge Structural Database: a quarter of a million crystal structures and rising
    Allen, FH
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 (3 PART 1): : 380 - 388
  • [2] Drug repositioning: Identifying and developing new uses for existing drugs
    Ashburn, TT
    Thor, KB
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (08) : 673 - 683
  • [3] Baertschi S.W., 2005, Pharmaceutical stress testing: Predicting drug degradation, V153
  • [4] Ban Thomas A, 2006, Dialogues Clin Neurosci, V8, P335
  • [5] Accurate whole human genome sequencing using reversible terminator chemistry
    Bentley, David R.
    Balasubramanian, Shankar
    Swerdlow, Harold P.
    Smith, Geoffrey P.
    Milton, John
    Brown, Clive G.
    Hall, Kevin P.
    Evers, Dirk J.
    Barnes, Colin L.
    Bignell, Helen R.
    Boutell, Jonathan M.
    Bryant, Jason
    Carter, Richard J.
    Cheetham, R. Keira
    Cox, Anthony J.
    Ellis, Darren J.
    Flatbush, Michael R.
    Gormley, Niall A.
    Humphray, Sean J.
    Irving, Leslie J.
    Karbelashvili, Mirian S.
    Kirk, Scott M.
    Li, Heng
    Liu, Xiaohai
    Maisinger, Klaus S.
    Murray, Lisa J.
    Obradovic, Bojan
    Ost, Tobias
    Parkinson, Michael L.
    Pratt, Mark R.
    Rasolonjatovo, Isabelle M. J.
    Reed, Mark T.
    Rigatti, Roberto
    Rodighiero, Chiara
    Ross, Mark T.
    Sabot, Andrea
    Sankar, Subramanian V.
    Scally, Aylwyn
    Schroth, Gary P.
    Smith, Mark E.
    Smith, Vincent P.
    Spiridou, Anastassia
    Torrance, Peta E.
    Tzonev, Svilen S.
    Vermaas, Eric H.
    Walter, Klaudia
    Wu, Xiaolin
    Zhang, Lu
    Alam, Mohammed D.
    Anastasi, Carole
    [J]. NATURE, 2008, 456 (7218) : 53 - 59
  • [6] Bolton EE, 2010, ANN REP COMP CHEM, V4, P217, DOI 10.1016/S1574-1400(08)00012-1
  • [7] Boudovitch D., 2023, 4open, V6, P9, DOI [10.1051/fopen/2024002, DOI 10.1051/FOPEN/2024002]
  • [8] New software for searching the Cambridge Structural Database and visualizing crystal structures
    Bruno, IJ
    Cole, JC
    Edgington, PR
    Kessler, M
    Macrae, CF
    McCabe, P
    Pearson, J
    Taylor, R
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2002, 58 : 389 - 397
  • [9] The Ethnopharmacologic Contribution to Bioprospecting Natural Products
    Buenz, Eric J.
    Verpoorte, Rob
    Bauer, Brent A.
    [J]. ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, VOL 58, 2018, 58 : 509 - 530
  • [10] A review on machine learning approaches and trends in drug discovery
    Carracedo-Reboredo, Paula
    Linares-Blanco, Jose
    Rodriguez-Fernandez, Nereida
    Cedron, Francisco
    Novoa, Francisco J.
    Carballal, Adrian
    Maojo, Victor
    Pazos, Alejandro
    Fernandez-Lozano, Carlos
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 4538 - 4558