Finite difference schemes with non polynomial local conservation laws

被引:0
作者
Frasca-Caccia, Gianluca [1 ]
机构
[1] Univ Salerno, Dept Math, Via Giovanni Paolo 2 132, I-84084 Fisciano, SA, Italy
基金
英国工程与自然科学研究理事会;
关键词
Finite difference methods; Conservation laws; Parameter optimization; sine-Gordon equation; Magma equation; RUNGE-KUTTA METHODS; KORTEWEG-DE-VRIES; ENERGY-CONSERVATION; NUMERICAL-SOLUTION; DISSIPATION; WAVES; PDES;
D O I
10.1016/j.cam.2024.116330
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new technique has been recently introduced to define finite difference schemes that preserve local conservation laws. So far, this approach has been applied to find parametric families of numerical methods with polynomial conservation laws. This paper extends the existing approach to preserve non polynomial conservation laws. Although the approach is general, the treatment of the nonlinear terms depends on the problem at hand. New parameter depending families of conservative schemes are here introduced for the sine-Gordon equation and a magma equation. Optimal methods in each family are identified by finding values of the parameters that minimize a defect-based approximation of the local error in the time discretization.
引用
收藏
页数:20
相关论文
共 46 条
[1]   On Asymptotic Stability of the Sine-Gordon Kink in the Energy Space [J].
Alejo, Miguel A. ;
Munoz, Claudio ;
Palacios, Jose M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (01) :581-636
[2]   Time adaptive Zassenhaus splittings for the Schrodinger equation in the semiclassical regime [J].
Auzinger, Winfried ;
Hofstaetter, Harald ;
Koch, Othmar ;
Kropielnicka, Karolina ;
Singh, Pranav .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 362
[3]   Defect-based local error estimators for splitting methods, with application to Schrodinger equations, Part II. Higher-order methods for linear problems [J].
Auzinger, Winfried ;
Koch, Othmar ;
Thalhammer, Mechthild .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 :384-403
[4]   NONLINEAR-WAVES IN COMPACTING MEDIA [J].
BARCILON, V ;
RICHTER, FM .
JOURNAL OF FLUID MECHANICS, 1986, 164 :429-448
[5]   Numerical methods for Hamiltonian PDEs [J].
Bridges, Thomas J. ;
Reich, Sebastian .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (19) :5287-5320
[6]   Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity [J].
Bridges, TJ ;
Reich, S .
PHYSICS LETTERS A, 2001, 284 (4-5) :184-193
[7]   Energy conservation issues in the numerical solution of the semilinear wave equation [J].
Brugnano, L. ;
Frasca Caccia, Gianluca ;
Iavernaro, F. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 :842-870
[8]  
Brugnano L., 2016, Line integral methods for conservative problems, DOI [10.1201/b19319, DOI 10.1201/B19319]
[9]   Spectrally accurate space-time solution of Hamiltonian PDEs [J].
Brugnano, Luigi ;
Iavernaro, Felice ;
Montijano, Juan I. ;
Randez, Luis .
NUMERICAL ALGORITHMS, 2019, 81 (04) :1183-1202
[10]   Analysis of Hamiltonian Boundary Value Methods (HBVMs): A class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems [J].
Brugnano, Luigi ;
Iavernaro, Felice ;
Trigiante, Donato .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (03) :650-667