Some recent progress on the periodic KPZ equation

被引:0
作者
Gu, Yu [1 ]
Komorowski, Tomasz [2 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00636 Warsaw, Poland
来源
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS | 2025年
基金
美国国家科学基金会;
关键词
KPZ equation; Directed polymer; Homogenization; Malliavin calculus; DIRECTED POLYMERS; BURGERS-EQUATION; TIME BEHAVIOR; HOMOGENIZATION; FLUCTUATIONS; FUNCTIONALS; PARTICLE; MODEL;
D O I
10.1007/s40072-025-00349-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We review recent progress on the study of the Kardar-Parisi-Zhang (KPZ) equation in a periodic setting, which describes the random growth of an interface in a cylindrical geometry. The main results include central limit theorems for the height of the interface and the winding number of the directed polymer in a periodic random environment. We present two different approaches for each result, utilizing either a homogenization argument or tools from Malliavin calculus. A surprising finding in the case of a 1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+1$$\end{document} spacetime white noise is that the effective variances for both the height and the winding number can be expressed in terms of independent Brownian bridges. Additionally, we present two new results: (i) the explicit expression of the corrector used in the homogenization argument, and (ii) the law of the iterated logarithm for the height function.
引用
收藏
页数:58
相关论文
共 85 条
[1]   Probability Distribution of the Free Energy of the Continuum Directed Random Polymer in 1+1 Dimensions [J].
Amir, Gideon ;
Corwin, Ivan ;
Quastel, Jeremy .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (04) :466-537
[2]  
Armstrong S, 2024, Arxiv, DOI arXiv:2404.01115
[3]  
Baik J., 2021, KPZ limit theorems
[4]   Limiting one-point distribution of periodic TASEP [J].
Baik, Jinho ;
Liu, Zhipeng ;
Silva, Guilherme L. F. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (01) :248-302
[5]   Periodic TASEP with general initial conditions [J].
Baik, Jinho ;
Liu, Zhipeng .
PROBABILITY THEORY AND RELATED FIELDS, 2021, 179 (3-4) :1047-1144
[6]   MULTIPOINT DISTRIBUTION OF PERIODIC TASEP [J].
Baik, Jinho ;
Liu, Zhipeng .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 32 (03) :609-674
[7]   Fluctuations of TASEP on a Ring in Relaxation Time Scale [J].
Baik, Jinho ;
Liu, Zhipeng .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2018, 71 (04) :747-813
[8]   TASEP on a Ring in Sub-relaxation Time Scale [J].
Baik, Jinho ;
Liu, Zhipeng .
JOURNAL OF STATISTICAL PHYSICS, 2016, 165 (06) :1051-1085
[9]   Localization of directed polymers in continuous space [J].
Bakhtin, Yuri ;
Seo, Donghyun .
ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 :1-56
[10]   THE BURGERS EQUATION WITH POISSON RANDOM FORCING [J].
Bakhtin, Yuri .
ANNALS OF PROBABILITY, 2013, 41 (04) :2961-2989