Analysis of Covid-19 Transmission Using Complex Networks

被引:0
作者
Shirai Reyna, Sashiko [1 ]
Sanchez, Oroselfia [2 ]
Garcia-Cerrud, Carmen A. [3 ]
Flores-De la Mota, Idalia [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Mexico City 04510, DF, Mexico
[2] Univ Iberoamer, Dept Chem Ind & Food Engn, Mexico City 01219, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Fac Ingn, Mexico City 04510, DF, Mexico
来源
SIMULATION FOR A SUSTAINABLE FUTURE, PT 1, EUROSIM 2023 | 2024年 / 2032卷
关键词
Pandemic; SARS-CoV-2-19 (COVID-19-9); Visibility algorithm; Time series; Complex networks; Modeling;
D O I
10.1007/978-3-031-68435-7_13
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The global public health crisis caused by the SARS-CoV-2-19 (COVID-19) pandemic has highlighted the need for research into contagion complexity. This challenge necessitates the development and testing of various approaches to manage rapidly changing information with high impact. In this paper, we employ time series analysis and complex networks analysis to compare the evolution, spread, and containment of COVID-19 pandemics in eleven countries and globally. Our analysis enables us to observe the dynamics of spread and the impact of different strategies employed by each country in increasing and decreasing cases through complex network techniques. Additionally, we explore the transformation of data behavior over time as our understanding of the virus improves. Our findings provide important insights into the limitations of using statistical models and suggest that simulation of new cases of COVID-19 data can be modeled using complex networks. The complex network model provides a general description of contagion dynamics in the 11 countries and worldwide situation. This paper contributes by highlighting the limitations of using statistical models to infer and study early time series data and proposing the use of a complex network approach to study contagion dynamics.
引用
收藏
页码:174 / 189
页数:16
相关论文
共 24 条
[1]   Neural Control for Epidemic Model of Covid-19 with a Complex Network Approach [J].
Alanis, Alma Y. ;
Hernandez-Vargas, Esteban A. ;
Ramirez, Nancy F. ;
Rios-Rivera, Daniel .
IEEE LATIN AMERICA TRANSACTIONS, 2021, 19 (06) :866-873
[2]  
[Anonymous], 2013, Scale-Free Networks. Complex Webs in Nature and Technology
[3]  
[Anonymous], 2021, Proc. Natl. Acad. Sci. USA, V118
[4]  
[Anonymous], 2020, WORLD HLTH ORG
[5]  
[Anonymous], 2020, Deafness and hearing loss
[6]  
[Anonymous], 2011, Structural Analysis of Complex Networks, DOI DOI 10.1007/978-0-8176-4789-6
[7]  
Barabasi AL, 2016, NETWORK SCIENCE, P1
[8]  
Colaneri P., 2020, SSRN Electron. J.
[9]   Cryptic transmission of SARS-CoV-2 and the first COVID-19 wave [J].
Davis, Jessica T. ;
Chinazzi, Matteo ;
Perra, Nicola ;
Mu, Kunpeng ;
Piontti, Ana ;
Ajelli, Marco ;
Dean, Natalie E. ;
Gioannini, Corrado ;
Litvinova, Maria ;
Merler, Stefano ;
Rossi, Luca ;
Sun, Kaiyuan ;
Xiong, Xinyue ;
Longini, Ira M., Jr. ;
Halloran, M. Elizabeth ;
Viboud, Cecile ;
Vespignani, Alessandro .
NATURE, 2021, 600 (7887) :127-+
[10]   Initial impacts of global risk mitigation measures taken during the combatting of the COVID-19 pandemic [J].
de Bruin, Yuri Bruinen ;
Lequarre, Anne-Sophie ;
McCourt, Josephine ;
Clevestig, Peter ;
Pigazzani, Filippo ;
Jeddi, Maryam Zare ;
Colosio, Claudio ;
Goulart, Margarida .
SAFETY SCIENCE, 2020, 128