Bifurcation and chaotic dynamics in a spatiotemporal epidemic model with delayed optimal control, stochastic process, and sensitivity analysis

被引:0
作者
Kumar, Arjun [1 ]
Dubey, Uma S. [2 ]
Dubey, Balram [1 ]
机构
[1] BITS Pilani, Dept Math, Pilani Campus, Pilani 333031, Rajasthan, India
[2] BITS Pilani, Dept Biol Sci, Pilani Campus, Pilani 333031, Rajasthan, India
关键词
BACKWARD BIFURCATION; SYSTEMS;
D O I
10.1063/5.0251992
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study introduces an epidemic model with a Beddington-DeAngelis-type incidence rate and Holling type II treatment rate. The Beddington-DeAngelis incidence rate is used to evaluate the effectiveness of inhibitory measures implemented by susceptible and infected individuals. Moreover, the choice of Holling type II treatment rate in our model aims to assess the impact of limited treatment facilities in the context of disease outbreaks. First, the well-posed nature of the model is analyzed, and then, we further investigated the local and global stability analysis along with bifurcation of co-dimensions 1 (transcritical, Hopf, saddle-node) and 2 (Bogdanov-Takens, generalized Hopf) for the system. Moreover, we incorporate a time-delayed model to investigate the effect of incubation delay on disease transmission. We provide a rigorous demonstration of the existence of chaos and establish the conditions that lead to chaotic dynamics and chaos control. Additionally, sensitivity analysis is performed using partial rank correlation coefficient and extended Fourier amplitude sensitivity test methods. Furthermore, we delve into optimal control strategies using Pontryagin's maximum principle and assess the influence of delays in state and control parameters on model dynamics. Again, a stochastic epidemic model is formulated and analyzed using a continuous-time Markov chain model for infectious propagation. Analytical estimation of the likelihood of disease extinction and the occurrence of an epidemic is conducted using the branching process approximation. The spatial system presents a comprehensive stability analysis and yielding criteria for Turing instability. Moreover, we have generated the noise-induced pattern to assess the effect of white noise in the populations. Additionally, a case study has been conducted to estimate the model parameters, utilizing COVID-19 data from Poland and HIV/AIDS data from India. Finally, all theoretical results are validated through numerical simulations. This article extensively explores various modeling techniques, like deterministic, stochastic, statistical, pattern formation(noise-induced), model fitting, and other modeling perspectives, highlighting the significance of the inhibitory effects exerted by susceptible and infected populations.
引用
收藏
页数:41
相关论文
共 52 条
[1]  
Allen Linda J S, 2017, Infect Dis Model, V2, P128, DOI 10.1016/j.idm.2017.03.001
[2]  
[Anonymous], about us
[3]  
[Anonymous], India Life Expectancy
[4]   MUTUAL INTERFERENCE BETWEEN PARASITES OR PREDATORS AND ITS EFFECT ON SEARCHING EFFICIENCY [J].
BEDDINGTON, JR .
JOURNAL OF ANIMAL ECOLOGY, 1975, 44 (01) :331-340
[5]   Optimal harvesting and complex dynamics in a delayed eco-epidemiological model with weak Allee effects [J].
Biswas, Santanu ;
Sasmal, Sourav Kumar ;
Samanta, Sudip ;
Saifuddin, Md. ;
Pal, Nikhil ;
Chattopadhyay, Joydev .
NONLINEAR DYNAMICS, 2017, 87 (03) :1553-1573
[6]   Assessing potential insights of an imperfect testing strategy: Parameter estimation and practical identifiability using early COVID-19 data in India [J].
Bugalia, Sarita ;
Tripathi, Jai Prakash .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 123
[7]   GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V ;
SERIO, G .
MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) :43-61
[8]   Dynamical models of tuberculosis and their applications [J].
Castillo-Chavez, C ;
Song, BJ .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2004, 1 (02) :361-404
[9]   STUDY OF SENSITIVITY OF COUPLED REACTION SYSTEMS TO UNCERTAINTIES IN RATE COEFFICIENTS .1. THEORY [J].
CUKIER, RI ;
FORTUIN, CM ;
SHULER, KE ;
PETSCHEK, AG ;
SCHAIBLY, JH .
JOURNAL OF CHEMICAL PHYSICS, 1973, 59 (08) :3873-3878
[10]   Optimal control strategy for cancer remission using combinatorial therapy: A mathematical model-based approach [J].
Das, Parthasakha ;
Das, Samhita ;
Das, Pritha ;
Rihan, Fathalla A. ;
Uzuntarla, Muhammet ;
Ghosh, Dibakar .
CHAOS SOLITONS & FRACTALS, 2021, 145