LncRNAs and the cancer epigenome: Mechanisms and therapeutic potential

被引:4
作者
Nadhan, Revathy [1 ]
Isidoro, Ciro [2 ]
Song, Yong Sang [3 ]
Dhanasekaran, Danny N. [1 ,4 ]
机构
[1] Univ Oklahoma Hlth Sci Ctr, Stephenson Canc Ctr, Oklahoma City, OK 73104 USA
[2] Univ Piemonte Orientale, Dept Hlth Sci, Lab Mol Pathol & Nanobioimaging, Novara, Italy
[3] Seoul Natl Univ, Coll Med, Dept Obstet & Gynecol, Canc Res Inst, Seoul 151921, South Korea
[4] Univ Oklahoma Hlth Sci Ctr, Dept Cell Biol, Oklahoma City, OK USA
基金
美国国家卫生研究院;
关键词
Long non-coding RNAs (lncRNAs); Cancer epigenetics; DNA methylation; Histone modification; Chromatin remodeling; Oncogenes; Tumor suppressors; Epigenetic therapy; Precision oncology; RNA interference (RNAi); LONG NONCODING RNA; ACTIVE DNA DEMETHYLATION; EPITHELIAL-MESENCHYMAL PLASTICITY; HISTONE LYSINE METHYLTRANSFERASES; CHROMATIN-REMODELING COMPLEXES; CPG BINDING-PROTEINS; EPIGENETIC REGULATION; FREQUENT MUTATIONS; ESOPHAGEAL CANCER; PRC2; RECRUITMENT;
D O I
10.1016/j.canlet.2024.217297
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Long non-coding RNAs (lncRNAs) have emerged as critical regulators of epigenome, modulating gene expression through DNA methylation, histone modification, and/or chromosome remodeling. Dysregulated lncRNAs act as oncogenes or tumor suppressors, driving tumor progression by shaping the cancer epigenome. By interacting with the writers, readers, and erasers of the epigenetic script, lncRNAs induce epigenetic modifications that bring about changes in cancer cell proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion, metastasis, cancer stemness and chemoresistance. This review analyzes and discusses the multifaceted role of lncRNAs in cancer pathobiology, from cancer genesis and progression through metastasis and therapy resistance. It also explores the therapeutic potential of targeting lncRNAs through innovative diagnostic, prognostic, and therapeutic strategies. Understanding the dynamic interplay between lncRNAs and epigenome is crucial for developing personalized therapeutic strategies, offering new avenues for precision cancer medicine.
引用
收藏
页数:18
相关论文
共 285 条
  • [1] Multiple functions of p27 in cell cycle, apoptosis, epigenetic modification and transcriptional regulation for the control of cell growth: A double-edged sword protein
    Abbastabar, Maryam
    Kheyrollah, Maryam
    Azizian, Khalil
    Bagherlou, Nazanin
    Tehrani, Sadra Samavarchi
    Maniati, Mahmood
    Karimian, Ansar
    [J]. DNA REPAIR, 2018, 69 : 63 - 72
  • [2] Selective Small-Molecule Targeting of a Triple Helix Encoded by the Long Noncoding RNA, MALAT1
    Abulwerdi, Fardokht A.
    Xu, Wenbo
    Ageeli, Abeer A.
    Yonkunas, Michael J.
    Arun, Gayatri
    Nam, Hyeyeon
    Schneekloth, John S., Jr.
    Dayie, Theodore Kwaku
    Spector, David
    Baird, Nathan
    Le Grice, Stuart F. J.
    [J]. ACS CHEMICAL BIOLOGY, 2019, 14 (02) : 223 - 235
  • [3] Long Noncoding RNA, Polycomb, and the Ghosts Haunting INK4b-ARF-INK4a Expression
    Aguilo, Francesca
    Zhou, Ming-Ming
    Walsh, Martin J.
    [J]. CANCER RESEARCH, 2011, 71 (16) : 5365 - 5369
  • [4] The BAF complex in development and disease
    Alfert, Amelie
    Moreno, Natalia
    Kerl, Kornelius
    [J]. EPIGENETICS & CHROMATIN, 2019, 12 (1)
  • [5] The molecular hallmarks of epigenetic control
    Allis, C. David
    Jenuwein, Thomas
    [J]. NATURE REVIEWS GENETICS, 2016, 17 (08) : 487 - 500
  • [6] Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity
    Amodio, Nicola
    Stamato, Maria Angelica
    Juli, Giada
    Morelli, Eugenio
    Fulciniti, Mariateresa
    Manzoni, Martina
    Taiana, Elisa
    Agnelli, Luca
    Cantafio, Maria Eugenia Gallo
    Romeo, Enrica
    Raimondi, Lavinia
    Caracciolo, Daniele
    Zuccala, Valeria
    Rossi, Marco
    Neri, Antonino
    Munshi, Nikhil C.
    Tagliaferri, Pierosandro
    Tassone, Pierfrancesco
    [J]. LEUKEMIA, 2018, 32 (09) : 1948 - 1957
  • [7] MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches
    Amodio, Nicola
    Raimondi, Lavinia
    Juli, Giada
    Stamato, Maria Angelica
    Caracciolo, Daniele
    Tagliaferri, Pierosandro
    Tassone, Pierfrancesco
    [J]. JOURNAL OF HEMATOLOGY & ONCOLOGY, 2018, 11
  • [8] Long Noncoding RNA TARID Directs Demethylation and Activation of the Tumor Suppressor TCF21 via GADD45A
    Arab, Khelifa
    Park, Yoon Jung
    Lindroth, Anders M.
    Schaefer, Andrea
    Oakes, Christopher
    Weichenhan, Dieter
    Lukanova, Annekatrin
    Lundin, Eva
    Risch, Angela
    Meister, Michael
    Dienemann, Hendrik
    Dyckhoff, Gerhard
    Herold-Mende, Christel
    Grummt, Ingrid
    Niehrs, Christof
    Plass, Christoph
    [J]. MOLECULAR CELL, 2014, 55 (04) : 604 - 614
  • [9] Epigenetic deregulation of TCF21 inhibits metastasis suppressor KISS1 in metastatic melanoma
    Arab, Khelifa
    Smith, Laura T.
    Gast, Andreas
    Weichenhan, Dieter
    Huang, Joseph Po-Hsien
    Claus, Rainer
    Hielscher, Thomas
    Espinosa, Allan V.
    Ringel, Matthew D.
    Morrison, Carl D.
    Schadendorf, Dirk
    Kumar, Rajiv
    Plass, Christoph
    [J]. CARCINOGENESIS, 2011, 32 (10) : 1467 - 1473
  • [10] High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response
    Arrizabalaga, Olatz
    Moreno-Cugnon, Leire
    Auzmendi-Iriarte, Jaione
    Aldaz, Paula
    Ibanez de Caceres, Inmaculada
    Garros-Regulez, Laura
    Moncho-Amor, Veronica
    Torres-Bayona, Sergio
    Pernia, Olga
    Pintado-Berninches, Laura
    Carrasco-Ramirez, Patricia
    Cortes-Sempere, Maria
    Rosas, Rocio
    Sanchez-Gomez, Pilar
    Ruiz, Irune
    Caren, Helena
    Pollard, Steven
    Garcia, Idoia
    Sacido, Angel-Ayuso
    Lovell-Badge, Robin
    Belda-Iniesta, Cristobal
    Sampron, Nicolas
    Perona, Rosario
    Matheu, Ander
    [J]. ONCOGENESIS, 2017, 6