An improved preconditioned unsupervised K-means clustering algorithm

被引:0
作者
Sun, Tiantian [1 ,2 ]
Peng, Xiaofei [1 ]
Ge, Wenxiu [1 ]
Xu, Weiwei [3 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised K-means; Cluster analysis; Bayesian information criterion; Circle detection; Gaussian mixture data; FUZZY C-MEANS; SEARCH; NUMBER;
D O I
10.1007/s00180-025-01616-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Unsupervised K-means clustering (UKM) algorithm has attracted the attention of many researchers because it can automatically identify the number of clusters without requiring any parameter selection. However, it may produce poor clustering results on datasets with Gaussian mixtures. In this paper, we consider the preconditioned UKM algorithm, where the truncated UKM algorithm is first used as a preconditioning strategy. To further enhance the algorithm's performance, we introduce a circular modification strategy. In particular, we determine whether to use the above strategies based on the Bayesian Information Criterion (BIC). The experimental results reveal that the proposed algorithms have a higher clustering accuracy than the UKM algorithm when applied to Gaussian mixture datasets.
引用
收藏
页数:21
相关论文
共 39 条
[1]  
Ali AR, 2014, ADV COMPU INTELL ROB, P1, DOI 10.4018/978-1-4666-6030-4.ch001
[2]  
Alimoglu F, 1997, PROC INT CONF DOC, P637, DOI 10.1109/ICDAR.1997.620583
[3]   An improved fast fuzzy c-means using crow search optimization algorithm for crop identification in agricultural [J].
Anter, Ahmed M. ;
Hassenian, Aboul Ella ;
Oliva, Diego .
EXPERT SYSTEMS WITH APPLICATIONS, 2019, 118 :340-354
[4]  
Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027
[5]   An entropy-based initialization method of K-means clustering on the optimal number of clusters [J].
Chowdhury, Kuntal ;
Chaudhuri, Debasis ;
Pal, Arup Kumar .
NEURAL COMPUTING & APPLICATIONS, 2021, 33 (12) :6965-6982
[6]   Fuzzy clustering of mixed data [J].
D'Urso, Pierpaolo ;
Massari, Riccardo .
INFORMATION SCIENCES, 2019, 505 :513-534
[7]   Iterative shrinking method for clustering problems [J].
Fränti, P ;
Virmajoki, I .
PATTERN RECOGNITION, 2006, 39 (05) :761-775
[8]   K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data [J].
Ikotun, Abiodun M. ;
Ezugwu, Absalom E. ;
Abualigah, Laith ;
Abuhaija, Belal ;
Heming, Jia .
INFORMATION SCIENCES, 2023, 622 :178-210
[9]   Data clustering: A review [J].
Jain, AK ;
Murty, MN ;
Flynn, PJ .
ACM COMPUTING SURVEYS, 1999, 31 (03) :264-323
[10]   Data clustering: 50 years beyond K-means [J].
Jain, Anil K. .
PATTERN RECOGNITION LETTERS, 2010, 31 (08) :651-666