Highly durable porous NiO-derived electrodes with superior bifunctional activity for scalable alkaline water electrolysis

被引:5
作者
Diao, Shukai [1 ,2 ]
Wang, Tianwen [1 ,2 ]
Kuang, Wen [1 ,2 ]
Yan, Su [1 ,2 ]
Zhang, Xiaotian [1 ,2 ]
Chen, Mingxuan [3 ]
Liu, Ying [1 ]
Tan, Aidong [1 ]
Yang, Tianrang [1 ]
Liu, Jianguo [1 ]
机构
[1] North China Elect Power Univ, Inst Energy Power Innovat, Beijing Lab New Energy Storage Technol, Beijing 102206, Peoples R China
[2] North China Elect Power Univ, Sch Energy Power & Mech Engn, Beijing 102206, Peoples R China
[3] China Three Gorges Technol Co Ltd, Beijing 101199, Peoples R China
基金
中国国家自然科学基金;
关键词
Green hydrogen; Alkaline water electrolysis; Bifunctional electrodes; Durability; Frequent start-stop; HYDROGEN EVOLUTION REACTION; REDOX REACTIONS; REVERSE CURRENT; NICKEL FOAM; NANOSHEETS; OXIDES; PERFORMANCE; PARAMETERS;
D O I
10.1016/j.cej.2024.158738
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Alkaline water electrolysis (AWE) is a leading "green hydrogen" production technology. Industrial electrodes use alkaline leaching to remove Al from NiAl alloy, creating pores and increasing specific surface area (SSA) but still suffer from poor electrode performance. This study presents a method for fabricating an efficient bifunctional electrode. The process involves creating a porous Ni layer with high SSA on nickel mesh (NM) by reducing NiO, which facilitates the formation of Ni(OH)2 nanosheets. The resulting Ni/Ni(OH)2@NM electrode features a hydrophilic, gas-repellent and highly electrochemically active surface. It achieves low overpotentials for hydrogen and oxygen evolution reactions (164 mV and 337 mV at 100 mA/cm2, respectively). The electrolyzer using Ni/Ni (OH)2@NM electrodes only requires 1.695 V to achieve 300 mA/cm2 at 80 degrees C after a 2000 h durability test. The electrode also demonstrates excellent stability under frequent start-stop cycles, making it well-suited for integration with intermittent renewable energy sources.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Electrochemical Growth of Surface Oxides on Nickel. Part 2: Formation of β-Ni(OH)2 and NiO in Relation to the Polarization Potential, Polarization Time, and Temperature [J].
Alsabet, Mohammad ;
Grden, Michal ;
Jerkiewicz, Gregory .
ELECTROCATALYSIS, 2014, 5 (02) :136-147
[2]   Recent advances in green hydrogen production, storage and commercial-scale use via catalytic ammonia cracking [J].
Asif, Muhammad ;
Bibi, Syeda Sidra ;
Ahmed, Sheraz ;
Irshad, Muhammad ;
Hussain, Muhammad Shakir ;
Zeb, Hassan ;
Khan, Muhammad Kashif ;
Kim, Jaehoon .
CHEMICAL ENGINEERING JOURNAL, 2023, 473
[3]   Room-Temperature, Meter-Scale Synthesis of Heazlewoodite-Based Nanoarray Electrodes for Alkaline Water Electrolysis [J].
Bai, Xinyu ;
Zhang, Mingcheng ;
Shen, Yucheng ;
Liang, Xiao ;
Jiao, Wenqiang ;
He, Rong ;
Zou, Yongcun ;
Chen, Hui ;
Zou, Xiaoxin .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (34)
[4]   Elucidating the increased ohmic resistances in zero-gap alkaline water electrolysis [J].
Barros, Rodrigo Lira Garcia ;
Kelleners, Mathy H. G. ;
van Bemmel, Lucas ;
van der Leegte, Thijmen V. N. ;
van der Schaaf, John ;
de Groot, Matheus T. .
ELECTROCHIMICA ACTA, 2024, 507
[5]   Evaluation of Raney nickel electrodes prepared by atmospheric plasma spraying for alkaline water electrolysers [J].
Chade, Daniel ;
Berlouis, Leonard ;
Infield, David ;
Cruden, Andrew ;
Nielsen, Peter Tommy ;
Mathiesen, Troels .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (34) :14380-14390
[6]   In-situ generation of Ni-CoOOH through deep reconstruction for durable alkaline water electrolysis [J].
Chen, Mingpeng ;
Liu, Di ;
Feng, Jinxian ;
Zhou, Pengfei ;
Qiao, Lulu ;
Feng, Wenlin ;
Chen, Yuyun ;
Ng, Kar Wei ;
Wang, Shuangpeng ;
Ip, Weng Fai ;
Pan, Hui .
CHEMICAL ENGINEERING JOURNAL, 2022, 443
[7]   Ultrathin Ni(0)-Embedded Ni(OH)2 Heterostructured Nanosheets with Enhanced Electrochemical Overall Water Splitting [J].
Dai, Lei ;
Chen, Zhe-Ning ;
Li, Liuxiao ;
Yin, Peiqun ;
Liu, Zhengqing ;
Zhang, Hua .
ADVANCED MATERIALS, 2020, 32 (08)
[8]   Tracking nickel oxide reduction in solid oxide cells via ex-situ ptychographic nano-tomography [J].
De Angelis, Salvatore ;
Jorgensen, Peter Stanley ;
Tsai, Esther Hsiao Rho ;
Holler, Mirko ;
Fevola, Giovanni ;
Bowen, Jacob R. .
MATERIALS CHARACTERIZATION, 2020, 162
[9]   Alkaline water electrolysis: with or without iron in the electrolyte? [J].
de Groot, Matheus T. .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2023, 42
[10]   Effect of iron addition to the electrolyte on alkaline water electrolysis performance [J].
Demnitz, Maximilian ;
Lamas, Yuran Martins ;
Barros, Rodrigo Lira Garcia ;
den Bouter, Anouk de Leeuw ;
van der Schaaf, John ;
de Groot, Matheus Theodorus .
ISCIENCE, 2024, 27 (01)