A natural idempotent in the descent algebra of a finite Coxeter group

被引:0
作者
Renteln, Paul [1 ]
机构
[1] Calif State Univ, Dept Phys, San Bernardino, CA 92407 USA
来源
ALGEBRAIC COMBINATORICS | 2023年 / 6卷 / 05期
关键词
Coxeter group; reflection representation; permutation representation; descents; descent algebra; idempotents; central limit theorems; INVERSION NUMBER; MAJOR INDEX; THEOREM; PROOF;
D O I
10.5802/alco.310
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a natural idempotent in the descent algebra of a finite Coxeter group. The proof is uniform (independent of the classification). This leads to a simple determination of the spectrum of a natural matrix related to descents. Other applications are discussed.
引用
收藏
页码:1177 / 1188
页数:13
相关论文
共 38 条
[1]   The flag major index and group actions on polynomial rings [J].
Adin, RM ;
Roichman, Y .
EUROPEAN JOURNAL OF COMBINATORICS, 2001, 22 (04) :431-446
[2]  
[Anonymous], 2002, Elem. Math. (Berlin), DOI DOI 10.1007/978-3-540-89394-3
[3]   A NEW PROOF OF A THEOREM OF SOLOMON [J].
ATKINSON, MD .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :351-354
[4]   SOLOMON DESCENT ALGEBRA REVISITED [J].
ATKINSON, MD .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1992, 24 :545-551
[5]  
Bergeron F., 1992, J. Algebraic Combin., V1, P23, DOI DOI 10.1023/A:1022481230120
[6]   A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements [J].
Bidigare, P ;
Hanlon, P ;
Rockmore, D .
DUKE MATHEMATICAL JOURNAL, 1999, 99 (01) :135-174
[7]  
Bidigare Thomas Patrick, 1997, Hyperplane arrangement face algebras and their associated Markov chains
[8]  
Bjorner A., 2005, Combinatorics of Coxeter Groups, V231, DOI 10.1007/3-540-27596-7
[9]  
Bona M., 2012, Combinatorics of Permutations, V2nd
[10]   Semigroups, rings, and Markov chains [J].
Brown, KS .
JOURNAL OF THEORETICAL PROBABILITY, 2000, 13 (03) :871-938