Universal minima of discrete potentials for sharp spherical codes

被引:0
作者
Boyvalenkov, Peter [1 ]
Dragnev, Peter [2 ]
Hardin, Douglas [3 ]
Saff, Edward [3 ]
Stoyanova, Maya [4 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, 8 Acad G Bonchev St, Sofia 1113, Bulgaria
[2] Purdue Univ Ft Wayne, Dept Math Sci, Ft Wayne, IN 46805 USA
[3] Vanderbilt Univ, Ctr Constructive Approximat, Dept Math, Nashville, TN 37240 USA
[4] Sofia Univ, Fac Math & Informat, St Kliment Ohridski 5 James Bourchier Blvd, Sofia 1164, Bulgaria
基金
美国国家科学基金会;
关键词
discrete potentials; sharp spherical configurations; linear programming; Gauss-Jacobi quadrature; universal bounds on polarization of codes; PACKING PROBLEM; BOUNDS; DESIGNS; GRAPHS;
D O I
10.4171/RMI/1509
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is devoted to the study of discrete potentials on the sphere in Rn for sharp codes. We show that the potentials of most of the known sharp codes attain the universal lower bounds for polarization for spherical tau-designs previously derived by the authors, where ``universal'' is meant in the sense of applying to a large class of potentials that includes absolutely monotone functions of inner products. We also extend our universal bounds to T-designs and the associated polynomial subspaces determined by the vanishing moments of spherical configurations and thus obtain the minima for the icosahedron, dodecahedron, and sharp codes coming from E8 and the Leech lattice. For this purpose, we investigate quadrature formulas for certain subspaces of Gegenbauer polynomials P-j((n)) which we call PULB subspaces, particularly those having basis {P-j((n))}(j=0)(2k+2)\{P-2k((n))}. Furthermore, for potentials with h((tau+1))<0 we prove that the strong sharp codes and the antipodal sharp codes attain the universal bounds and their minima occur at points of the codes. The same phenomenon is established for the 600-cell when the potential h satisfies h((i) )>= 0, i=1,& mldr;,15, and h((16))<= 0.
引用
收藏
页码:603 / 650
页数:48
相关论文
共 41 条
  • [21] Coherence Optimization and Best Complex Antipodal Spherical Codes
    Zoerlein, Henning
    Bossert, Martin
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (24) : 6606 - 6615
  • [22] Nearly orthogonal vectors and small antipodal spherical codes
    Bukh, Boris
    Cox, Christopher
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 238 (01) : 359 - 388
  • [23] Universal monotonicity of eigenvalue moments and sharp Lieb-Thirring inequalities
    Stubbe, Joachim
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (06) : 1347 - 1353
  • [24] Universal optimal configurations for the p-frame potentials
    Chen, X.
    Gonzalez, V
    Goodman, E.
    Kang, S.
    Okoudjou, K. A.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (01)
  • [25] Spherical codes, maximal local packing density, and the golden ratio
    Hopkins, Adam B.
    Stillinger, Frank H.
    Torquato, Salvatore
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)
  • [26] Upper bounds for energies of spherical codes of given cardinality and separation
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (09) : 1811 - 1826
  • [27] Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps
    Bachoc, Christine
    Vallentin, Frank
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (03) : 625 - 637
  • [28] From refined estimates for spherical harmonics to a sharp multiplier theorem on the Grushin sphere
    Casarino, Valentina
    Ciatti, Paolo
    Martini, Alessio
    ADVANCES IN MATHEMATICS, 2019, 350 : 816 - 859
  • [29] Sharp time decay estimates for the discrete Klein-Gordon equation
    Cuenin, Jean-Claude
    Ikromov, Isroil A.
    NONLINEARITY, 2021, 34 (11) : 7938 - 7962
  • [30] KRAWTCHOUK POLYNOMIALS AND UNIVERSAL BOUNDS FOR CODES AND DESIGNS IN HAMMING-SPACES
    LEVENSHTEIN, VI
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (05) : 1303 - 1321