Universal minima of discrete potentials for sharp spherical codes

被引:0
|
作者
Boyvalenkov, Peter [1 ]
Dragnev, Peter [2 ]
Hardin, Douglas [3 ]
Saff, Edward [3 ]
Stoyanova, Maya [4 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, 8 Acad G Bonchev St, Sofia 1113, Bulgaria
[2] Purdue Univ Ft Wayne, Dept Math Sci, Ft Wayne, IN 46805 USA
[3] Vanderbilt Univ, Ctr Constructive Approximat, Dept Math, Nashville, TN 37240 USA
[4] Sofia Univ, Fac Math & Informat, St Kliment Ohridski 5 James Bourchier Blvd, Sofia 1164, Bulgaria
基金
美国国家科学基金会;
关键词
discrete potentials; sharp spherical configurations; linear programming; Gauss-Jacobi quadrature; universal bounds on polarization of codes; PACKING PROBLEM; BOUNDS; DESIGNS; GRAPHS;
D O I
10.4171/RMI/1509
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is devoted to the study of discrete potentials on the sphere in Rn for sharp codes. We show that the potentials of most of the known sharp codes attain the universal lower bounds for polarization for spherical tau-designs previously derived by the authors, where ``universal'' is meant in the sense of applying to a large class of potentials that includes absolutely monotone functions of inner products. We also extend our universal bounds to T-designs and the associated polynomial subspaces determined by the vanishing moments of spherical configurations and thus obtain the minima for the icosahedron, dodecahedron, and sharp codes coming from E8 and the Leech lattice. For this purpose, we investigate quadrature formulas for certain subspaces of Gegenbauer polynomials P-j((n)) which we call PULB subspaces, particularly those having basis {P-j((n))}(j=0)(2k+2)\{P-2k((n))}. Furthermore, for potentials with h((tau+1))<0 we prove that the strong sharp codes and the antipodal sharp codes attain the universal bounds and their minima occur at points of the codes. The same phenomenon is established for the 600-cell when the potential h satisfies h((i) )>= 0, i=1,& mldr;,15, and h((16))<= 0.
引用
收藏
页码:603 / 650
页数:48
相关论文
共 41 条
  • [2] Universal Lower Bounds for Potential Energy of Spherical Codes
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    CONSTRUCTIVE APPROXIMATION, 2016, 44 (03) : 385 - 415
  • [3] Universal Lower Bounds for Potential Energy of Spherical Codes
    P. G. Boyvalenkov
    P. D. Dragnev
    D. P. Hardin
    E. B. Saff
    M. M. Stoyanova
    Constructive Approximation, 2016, 44 : 385 - 415
  • [4] Quantum spherical codes
    Jain, Shubham P.
    Iosue, Joseph T.
    Barg, Alexander
    Albert, Victor V.
    NATURE PHYSICS, 2024, 20 (08) : 1300 - 1305
  • [5] Complex spherical codes with two inner products
    Nozaki, Hiroshi
    Suda, Sho
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 51 : 511 - 518
  • [6] On spherical codes with inner products in a prescribed interval
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (2-3) : 299 - 315
  • [7] Rigidity of spherical codes
    Cohn, Henry
    Jiao, Yang
    Kumar, Abhinav
    Torquato, Salvatore
    GEOMETRY & TOPOLOGY, 2011, 15 (04) : 2235 - 2274
  • [8] Complex Spherical Codes with Three Inner Products
    Nozaki, Hiroshi
    Suda, Sho
    DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 60 (02) : 294 - 317
  • [9] Asymptotic bounds for spherical codes
    Manin, Yu, I
    Marcolli, M.
    IZVESTIYA MATHEMATICS, 2019, 83 (03) : 540 - 564
  • [10] On polarization of spherical codes and designs
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 524 (01)