An Experimental Investigation on Combustion and Emissions of a Hydrogen Enriched Ammonia-Diesel Dual Fuel Engine at a Medium Load Condition

被引:0
|
作者
Guo, Hongsheng [1 ]
Liko, Brian [1 ]
Stevenson, David [1 ]
Austin, Kevin [1 ]
机构
[1] Clean Energy Innovation Research Center, National Research Council Canada, 1200 Montreal Road, Ottawa,ON,K1A 0R6, Canada
关键词
Greenhouse gas emissions - Hydrogen engines - Hydrogen fuels - Ignition - Low emission;
D O I
10.1115/1.4067450
中图分类号
学科分类号
摘要
As a carbon-free hydrogen carrier, ammonia is easy to store, handle, and distribute compared to hydrogen itself. Switching from diesel to green ammonia in heavy-duty compression ignition engines dominating the power generation of freight transportation industry has the potential to reduce greenhouse gas (GHG) emissions. However, due to the low flame speed and presence of fuel-bound nitrogen, ammonia combustion may result in certain unburned ammonia slip and nitrous oxide (N2O) emissions, which offsets its zero-carbon advantage in applications. In this paper, an investigation on the influence of hydrogen blending on ammonia slip and emissions of nitrogen oxide (NO), N2O, and GHG in a heavy-duty ammonia-diesel dual fuel engine is experimentally conducted at a medium engine load, various hydrogen blending ratios, and different gaseous fuel energy fractions. The results reveal that hydrogen blending does help significantly reduce ammonia slip. However, hydrogen blending does not help reduce N2O emissions at relatively lower gaseous fuel energy fractions that result in lower equivalence ratio for hydrogen/ammonia mixture but does help reduce N2O emissions at relatively larger gaseous fuel energy fractions. As a result, hydrogen blending does not help reduce GHG emissions at relatively lower gaseous fuel energy fractions, but does help at higher gaseous fuel energy fractions. Blending of a small amount of hydrogen significantly improves engine efficiency, but the effect of further increasing hydrogen blending ratio on engine efficiency is insignificant. A side effect of hydrogen blending is that it increases NO emissions since it not only increases combustion temperature but also promotes the NO formation via fuel route during ammonia combustion. © 2025 American Society of Mechanical Engineers (ASME). All rights reserved.
引用
收藏
相关论文
共 50 条
  • [1] Numerical investigation of the hydrogen-enriched ammonia-diesel RCCI combustion engine
    Fakhari, Amir Hossein
    Gharehghani, Ayat
    Salahi, Mohammad Mahdi
    Andwari, Amin Mahmoudzadeh
    FUEL, 2024, 375
  • [2] Investigation on combustion and emissions of ammonia-diesel dual-fuel engine in relation to ammonia energy ratio and injection parameters
    Zhou, Yuhan
    Sun, Ping
    Ji, Qian
    Ni, Xiangdong
    Wang, Meng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 100 : 713 - 726
  • [3] EFFECTS OF HYDROGEN ON COMBUSTION IN AMMONIA-DIESEL DUAL FUEL ENGINE AND DEMONSTRATION OF AUTOTHERMAL CATALYST TO REFORM AMMONIA INTO HYDROGEN
    Niki, Yoichi
    Hirata, Koichi
    Kobayashi, Kazuyuki
    Shimizu, Yuki
    PROCEEDINGS OF ASME 2023 ICE FORWARD CONFERENCE, ICEF2023, 2023,
  • [4] EXPERIMENTAL INVESTIGATION OF EFFECTS OF SPLIT DIESEL-PILOT INJECTION ON EMISSIONS FROM AMMONIA-DIESEL DUAL FUEL ENGINE
    Niki, Yoichi
    PROCEEDINGS OF ASME 2021 INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF2021), 2021,
  • [5] Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel
    Reiter, Aaron J.
    Kong, Song-Charng
    FUEL, 2011, 90 (01) : 87 - 97
  • [6] Effects of fuel injection strategy and ammonia energy ratio on combustion and emissions of ammonia-diesel dual-fuel engine
    Jin, Shouying
    Wu, Binyang
    Zi, Zhenyuan
    Yang, Puze
    Shi, Taifeng
    Zhang, Junhong
    FUEL, 2023, 341
  • [7] Study on the Impact of Ammonia-Diesel Dual-Fuel Combustion on Performance of a Medium-Speed Diesel Engine
    Xiao, Hua
    Ying, Wenxuan
    Chen, Aiguo
    Chen, Guansheng
    Liu, Yang
    Lyu, Zhaochun
    Qiao, Zengyin
    Li, Jun
    Zhou, Zhenwei
    Deng, Xi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (05)
  • [8] Experimental investigation of the effect of ammonia substitution ratio on an ammonia-diesel dual-fuel engine performance
    Liu, Junheng
    Liu, Jinlong
    JOURNAL OF CLEANER PRODUCTION, 2024, 434
  • [9] Combustion and emission characteristics of ammonia-diesel dual fuel engine at different altitudes
    Nie, Xuexuan
    Bi, Yuhua
    Shen, Lizhong
    Lei, Jilin
    Wan, Mingding
    Wang, Zhengjiang
    Liu, Shaohua
    Huang, Fenlian
    FUEL, 2024, 371
  • [10] Experimental study on ammonia-diesel co-combustion in a dual-fuel compression ignition engine
    Jamrozik, Arkadiusz
    Tutak, Wojciech
    Pyrc, Michal
    Rogalinski, Karol
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 115