A cell-based Papain-like Protease (PLpro) activity assay for rapid detection of active SARS-CoV-2 infections and antivirals

被引:0
|
作者
Jimenez-Campos, Anahi G. [1 ]
Maestas, Lucas I. [1 ]
Velappan, Nileena [2 ]
Beck, Brian [3 ]
Ye, Chunyan [4 ,5 ]
Wernsing, Keith [6 ]
Mata-Solis, Yaniksa [6 ]
Bruno, William J. [7 ]
Bussmann, Silas C. [1 ]
Bradfute, Steven [4 ,5 ]
Baca, Justin T. [1 ]
Rininsland, Frauke H. [6 ]
机构
[1] Univ New Mexico, Dept Emergency Med, Hlth Sci Ctr, Albuquerque, NM USA
[2] Los Alamos Natl Lab, Los Alamos, NM USA
[3] Microbiologics, St Cloud, MN USA
[4] Univ New Mexico, Hlth Sci Ctr, Ctr Global Hlth, Albuquerque, NM USA
[5] Univ New Mexico, Dept Internal Med, Albuquerque, NM USA
[6] Mesa Photon, Santa Fe, NM 87505 USA
[7] SciTransTech, Santa Fe, NM USA
来源
PLOS ONE | 2024年 / 19卷 / 12期
关键词
RESPIRATORY SYNDROME CORONAVIRUS; CYCLE THRESHOLD VALUES; PURIFICATION; COVID-19; RNA;
D O I
10.1371/journal.pone.0309305
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are a continuous threat to human life. An urgent need remains for simple and fast tests that reliably detect active infections with SARS-CoV-2 and its variants in the early stage of infection. Here we introduce a simple and rapid activity-based diagnostic (ABDx) test that identifies SARS-CoV-2 infections by measuring the activity of a viral enzyme, Papain-Like protease (PLpro). The test system consists of a peptide that fluoresces when cleaved by SARS PLpro that is active in crude, unprocessed lysates from human tongue scrapes and saliva. Test results are obtained in 30 minutes or less using widely available fluorescence plate readers, or a battery-operated portable instrument for on-site testing. Proof-of-concept was obtained in a study on clinical specimens collected from patients with COVID-19 like symptoms who tested positive (n = 10) or negative (n = 10) with LIAT RT-PCR using nasal mid turbinate swabs. When saliva from these patients was tested with in-house endpoint RT-PCR, 17 were positive and only 5 specimens were negative, of which 2 became positive when tested 5 days later. PLpro activity correlated in 17 of these cases (3 out of 3 negatives and 14 out of 16 positives, with one invalid specimen). Despite the small number of samples, the agreement was significant (p value = 0.01). Two false negatives were detected, one from a sample with a late Ct value of 35 in diagnostic RT-PCR, indicating that an active infection was no longer present. The PLpro assay is easily scalable and expected to detect all viable SARS-CoV-2 variants, making it attractive as a screening and surveillance tool. Additionally, we show feasibility of the platform as a new homogeneous phenotypic assay for rapid screening of SARS-CoV-2 antiviral drugs and neutralizing antibodies.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2
    Klemm, Theresa
    Ebert, Gregor
    Calleja, Dale J.
    Allison, Cody C.
    Richardson, Lachlan W.
    Bernardini, Jonathan P.
    Lu, Bernadine G. C.
    Kuchel, Nathan W.
    Grohmann, Christoph
    Shibata, Yuri
    Gan, Zhong Yan
    Cooney, James P.
    Doerflinger, Marcel
    Au, Amanda E.
    Blackmore, Timothy R.
    van der Heden van Noort, Gerbrand J.
    Geurink, Paul P.
    Ovaa, Huib
    Newman, Janet
    Riboldi-Tunnicliffe, Alan
    Czabotar, Peter E.
    Mitchell, Jeffrey P.
    Feltham, Rebecca
    Lechtenberg, Bernhard C.
    Lowes, Kym N.
    Dewson, Grant
    Pellegrini, Marc
    Lessene, Guillaume
    Komander, David
    EMBO JOURNAL, 2020, 39 (18)
  • [2] Genetically Encoded Fluorescent Sensors for SARS-CoV-2 Papain-like Protease PLpro
    Sokolinskaya, Elena L.
    Putlyaeva, Lidia, V
    Polinovskaya, Vasilisa S.
    Lukyanov, Konstantin A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (14)
  • [3] Identification of novel allosteric sites of SARS-CoV-2 papain-like protease (PLpro) for the development of COVID-19 antivirals
    Ferreira, Juliana C.
    Villanueva, Adrian J.
    Al Adem, Kenana
    Fadl, Samar
    Alzyoud, Lara
    Ghattas, Mohammad A.
    Rabeh, Wael M.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2024, 300 (11)
  • [4] Drug Repurposing for the SARS-CoV-2 Papain-Like Protease
    Cho, Chia-Chuan
    Li, Shuhua G.
    Lalonde, Tyler J.
    Yang, Kai S.
    Yu, Ge
    Qiao, Yuchen
    Xu, Shiqing
    Ray Liu, Wenshe
    CHEMMEDCHEM, 2022, 17 (01)
  • [5] SARS-CoV-2 papain-like protease (PLpro) inhibitory and antiviral activity of small molecule derivatives for drug leads
    Ghosh, Arun K.
    Shahabi, Dana
    Imhoff, Mackenzie E. C.
    Kovela, Satish
    Sharma, Ashish
    Hattori, Shin-ichiro
    Higashi-Kuwata, Nobuyo
    Mitsuya, Hiroaki
    Mesecar, Andrew D.
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2023, 96
  • [6] Review of the crystallized structures of the SARS-CoV-2 papain-like protease
    Qiu, Yue
    Jiang, Hua-Juan
    Yang, Yu-Shun
    Hu, Xiao-Qin
    Zeng, Xue-Wen
    JOURNAL OF MOLECULAR STRUCTURE, 2025, 1333
  • [7] Non-Covalent Inhibitors of SARS-CoV-2 Papain-Like Protease (PLpro): In Vitro and In Vivo Antiviral Activity
    Velma, Ganga Reddy
    Shen, Zhengnan
    Holberg, Cameron
    Fu, Jiqiang
    Soleymani, Farinaz
    Cooper, Laura
    Ramos, Omar Lozano
    Indukuri, Divakar
    Musku, Soumya Reddy
    Rychetsky, Pavel
    Slilaty, Steve
    Li, Zuomei
    Ratia, Kiira
    Rong, Lijun
    Schenten, Dominik
    Xiong, Rui
    Thatcher, Gregory R.
    JOURNAL OF MEDICINAL CHEMISTRY, 2024, 67 (16) : 13681 - 13702
  • [8] Crystal structure of SARS-CoV-2 papain-like protease
    Gao, Xiaopan
    Qin, Bo
    Chen, Pu
    Zhu, Kaixiang
    Hou, Pengjiao
    Wojdyla, Justyna Aleksandra
    Wang, Meitian
    Cui, Sheng
    ACTA PHARMACEUTICA SINICA B, 2021, 11 (01) : 237 - 245
  • [9] SARS-CoV-2 Papain-Like Protease: Structure, Function and Inhibition
    Ullrich, Sven
    Nitsche, Christoph
    CHEMBIOCHEM, 2022, 23 (19)
  • [10] The SARS-CoV-2 SSHHPS Recognized by the Papain-like Protease
    Reynolds, Nathanael D.
    Aceves, Nathalie M.
    Liu, Jinny L.
    Compton, Jaimee R.
    Leary, Dagmar H.
    Freitas, Brendan T.
    Pegan, Scott D.
    Doctor, Katarina Z.
    Wu, Fred Y.
    Hu, Xin
    Legler, Patricia M.
    ACS INFECTIOUS DISEASES, 2021, 7 (06): : 1483 - 1502