Tin-based dual-modification enabling enhanced air stability and electrochemical performance for Li 5.5 PS 4.5 Cl 1.5 in all-solid-state lithium metal batteries

被引:5
作者
Yang, Jie [1 ,2 ]
Jiang, Zilin [1 ,2 ]
Liu, Chen [1 ]
Li, Lin [1 ]
Li, Siwu [3 ]
Wu, Zhongkai [1 ]
Wei, Chaochao [1 ]
Luo, Qiyue [1 ]
Zhang, Long [4 ]
Cheng, Shijie [1 ]
Yu, Chuang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, State Key Lab Adv Electromagnet Engn & Technol, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Wuhan 430074, Peoples R China
[3] Xidian Univ, Acad Adv Interdisciplinary Res, Interdisciplinary Res Ctr Smart Sensors, Xian 710126, Shaanxi, Peoples R China
[4] Fujian Normal Univ, Coll Phys & Energy, Fuzhou 350117, Fujian, Peoples R China
关键词
Choline-rich argyrodite; All-solid-state lithium metal batteries; Dual-doping; Anode electrochemical performance; Li-10% SnF2; ELECTROLYTE;
D O I
10.1016/j.cej.2024.157027
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As one of sulfide electrolytes, chlorine-rich lithium argyrodites (Li 5.5 PS 4.5 Cl 1.5 ) have significant advantages as solid state electrolytes (SSEs) in all-solid-state batteries (ASSBs) due to their ultra-high conductivity. However, their practical application is limited by poor air stability and weak compatibility with Li metals. Herein, we enhance the performance of Li 5.5 PS 4.5 Cl 1.5 by doping it with SnO2, resulting in the formation of the Li 5.58 P 0.92 Sn 0.08 S 4.34 O 0.16 Cl 1.5 electrolyte. The introduction of Sn and O dopants forms strong Sn-S and P-O bonds in the electrolyte, replacing the sensitive P-S bonds and suppressing H2S release. Additionally, this doped electrolyte demonstrates an impressive Li-ion conductivity of 5.71 mS cm- 1 , a high critical current density of 2.9 mA cm- 2 , and significantly improved air and moisture stability. Moreover, the Sn dopant produces a Li-Sn alloy layer on the bare Li metal anode, endowing the ASSB with an initial discharge capacity of 146.7 mAh/g at 0.2C and a capacity retention of 86.2 % after 200 cycles at 0.5C. Combining with a 10 wt% SnF2-treated Li metal anode to further strengthen the electrode interfacial stability by the in-situ formed Li-Sn and LiF derivatives, the resultant full cell delivers a promoted initial discharge capacity of 179.5 mAh/g at 0.2C and a high discharge capacity of 112.2 mAh/g after 300 cycles at 0.5C. The dual strategy of electrolyte doping and Li anode modification achieves a synergistic effect that enables the ASSB to exhibit superior electrochemical performance, providing an effective way of preparing stable sulfide-based SSEs for large-scale applications.
引用
收藏
页数:13
相关论文
共 47 条
[1]   Current Status and Future Perspective on Lithium Metal Anode Production Methods [J].
Acebedo, Begona ;
Morant-Minana, Maria C. ;
Gonzalo, Elena ;
de Larramendi, Idoia Ruiz ;
Villaverde, Aitor ;
Rikarte, Jokin ;
Fallarino, Lorenzo .
ADVANCED ENERGY MATERIALS, 2023, 13 (13)
[2]   Enhanced Air Stability and High Li-Ion Conductivity of Li6.988P2.994Nb0.2S10.934O0.6 Glass-Ceramic Electrolyte for All-Solid-State Lithium-Sulfur Batteries [J].
Ahmad, Niaz ;
Zhou, Lei ;
Faheem, Muhammad ;
Tufail, Muhammad Khurram ;
Yang, Le ;
Chen, Renjie ;
Zhou, Yaodan ;
Yang, Wen .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (19) :21548-21558
[3]   Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries [J].
Asano, Tetsuya ;
Sakai, Akihiro ;
Ouchi, Satoru ;
Sakaida, Masashi ;
Miyazaki, Akinobu ;
Hasegawa, Shinya .
ADVANCED MATERIALS, 2018, 30 (44)
[4]   Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: An XPS study [J].
Auvergniot, Jeremie ;
Cassel, Alice ;
Foix, Dominique ;
Viallet, Virgine ;
Seznec, Vincent ;
Dedryvere, Remi .
SOLID STATE IONICS, 2017, 300 :78-85
[5]   Processing Strategies to Improve Cell-Level Energy Density of Metal Sulfide Electrolyte-Based All-Solid-State Li Metal Batteries and Beyond [J].
Cao, Daxian ;
Zhao, Yuyue ;
Sun, Xiao ;
Natan, Avi ;
Wang, Ying ;
Xiang, Pengyang ;
Wang, Wei ;
Zhu, Hongli .
ACS ENERGY LETTERS, 2020, 5 (11) :3468-3489
[6]   Sn-O dual-doped Li-argyrodite electrolytes with enhanced electrochemical performance [J].
Chen, Ting ;
Zeng, Dewu ;
Zhang, Long ;
Yang, Meng ;
Song, Dawei ;
Yan, Xinlin ;
Yu, Chuang .
JOURNAL OF ENERGY CHEMISTRY, 2021, 59 :530-537
[7]   Research progress and prospect in typical sulfide solid-state electrolytes [J].
Duan, Yi ;
Bai, Xiangtao ;
Yu, Tianwei ;
Rong, Yang ;
Wu, Yanlong ;
Wang, Xi ;
Yang, Junfeng ;
Wang, Jiantao .
JOURNAL OF ENERGY STORAGE, 2022, 55
[8]   Evaluating the Use of Critical Current Density Tests of Symmetric Lithium Transference Cells with Solid Electrolytes [J].
Fuchs, Till ;
Haslam, Catherine G. ;
Richter, Felix H. ;
Sakamoto, Jeff ;
Janek, Juergen .
ADVANCED ENERGY MATERIALS, 2023, 13 (45)
[9]   Superior lithium-metal all-solid-state batteries with in-situ formed Li3N-LiF-rich interphase [J].
Gao, Qifa ;
Wu, Dengxu ;
Wang, Zhixuan ;
Lu, Pushun ;
Zhu, Xiang ;
Ma, Tenghuan ;
Yang, Ming ;
Chen, Liquan ;
Li, Hong ;
Wu, Fan .
ENERGY STORAGE MATERIALS, 2023, 63
[10]   Thin laminar inorganic solid electrolyte with high ionic conductance towards high-performance all-solid-state lithium battery [J].
Guo, Shiyuan ;
Kou, Weijie ;
Wu, Wenjia ;
Lv, Ruixin ;
Yang, Zhihao ;
Wang, Jingtao .
CHEMICAL ENGINEERING JOURNAL, 2022, 427