Subdivision Algorithm of A Type aß-Bezier Curve

被引:0
|
作者
Ma, Leting [1 ]
Sun, Yuan [1 ]
Yang, Huogen [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Coll Sci, Ganzhou 341000, Peoples R China
来源
2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024 | 2024年
基金
中国国家自然科学基金;
关键词
shape parameters; De Casteljau algorithms; subdivision algorithm;
D O I
10.1109/ICCEA62105.2024.10604147
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Splines with shape parameters have stronger expression ability than the traditional splines. In this paper, a alpha ss-Bezier curve with shape parameters are studied. A necessary condition for obtaining subdivision algorithms based on De Casteljau algorithm for general parameter curves is given. Under this condition, it was verified that the alpha ss-Bezier curve cannot calculate the control points of the subdivided sub-curves through De Casteljau algorithm. The alpha ss-Bezier curve subdivision algorithm was provided by the mutual transformation relationship between the alpha ss-Bezier curve and the classical Bezier curve. The two sub-curves are defined by the two sets of control points obtained through the subdivision algorithm and alpha ss-Bezier basis functions. The algorithm is simple, intuitive, and easy to operate. Calculation examples also demonstrate the feasibility and effectiveness of the algorithm.
引用
收藏
页码:122 / 127
页数:6
相关论文
共 50 条
  • [1] SUBDIVISION OF THE BEZIER CURVE
    CHANG, G
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1983, 19 (08) : 1227 - 1233
  • [2] Convex subdivision of a Bezier curve
    Ait-Haddou, R
    Herzog, W
    COMPUTER AIDED GEOMETRIC DESIGN, 2002, 19 (08) : 663 - 671
  • [3] A New Scheme of Interpolation Subdivision Surface by using the Bezier Curve
    Mao Aihua
    Chen Jun
    Wang Ruomei
    Luo Jie
    2014 5TH INTERNATIONAL CONFERENCE ON DIGITAL HOME (ICDH), 2014, : 140 - 145
  • [4] ON A BEZIER-TYPE CURVE
    DERRIENNIC, MM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (05): : 455 - 460
  • [5] A subdivision algorithm for generalized Bernstein-Bezier curves
    Jena, MK
    Shunmugaraj, P
    Das, PC
    COMPUTER AIDED GEOMETRIC DESIGN, 2001, 18 (07) : 673 - 698
  • [6] Firefly Algorithm for Bezier Curve Approximation
    Galvez, Akemi
    Iglesias, Andres
    PROCEEDINGS OF THE 2013 13TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ITS APPLICATIONS (ICCSA 2013), 2013, : 81 - 88
  • [7] Isotopic equivalence by Bezier curve subdivision for application to high performance computing
    Jordan, K. E.
    Li, J.
    Peters, T. J.
    Roulier, J. A.
    COMPUTER AIDED GEOMETRIC DESIGN, 2014, 31 (09) : 642 - 655
  • [8] DECASTELJAU-TYPE SUBDIVISION IS PECULIAR TO BEZIER CURVES
    BARRY, PJ
    GOLDMAN, RN
    COMPUTER-AIDED DESIGN, 1988, 20 (03) : 114 - 116
  • [9] An iterative/subdivision hybrid algorithm for curve/curve intersection
    Gun Srijuntongsiri
    The Visual Computer, 2011, 27 : 365 - 371
  • [10] An iterative/subdivision hybrid algorithm for curve/curve intersection
    Srijuntongsiri, Gun
    VISUAL COMPUTER, 2011, 27 (05): : 365 - 371