ON LIE TRIPLE CENTRALIZERS OF VON NEUMANN ALGEBRAS

被引:2
作者
Fadaee, Behrooz [1 ]
Ghahramani, Hoger [1 ]
机构
[1] Univ Kurdistan, Fac Sci, Dept Math, POB 416, Sanandaj, Kurdistan, Iran
来源
OPERATORS AND MATRICES | 2024年 / 18卷 / 03期
关键词
Von Neumann algebra; Lie triple centralizer; Lie centralizer;
D O I
10.7153/oam-2024-18-32
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let degrees l' be a von Neumann algebra endowed with the Lie product [ A , B ] = AB- - BA ( A , B is an element of degrees l' ). In this article, we consider the subsequent condition on an additive mapping phi phi on the von Neumann algebra degrees l' with a suitable projection P is an element of degrees l' : phi ([[A,B],C]) A , B ] , C ]) = [[phi(A),B],C] phi( A ) , B ] , C ] = [[A,phi(B)],C] A , phi( B )] , C ] for all A,B,C , B , C is an element of degrees l' with AB=P = P and we show that phi(A) phi( A ) = WA + xi( A ) for all A is an element of is an element of degrees l' , where W is an element of Z ( degrees l' ) , and xi xi : degrees l' -> Z ( degrees l' ) (Z ( degrees l' ) is the center of degrees l') ) is an additive map in which xi([[ A , B ] , C ]) = 0 for any A,B,C , B , C is an element of degrees l' with AB = P . We also give some results of the conclusion.
引用
收藏
页码:559 / 570
页数:12
相关论文
共 17 条
[1]   Multiplicative generalized Lie n-derivations of unital rings with idempotents [J].
Ashraf, Mohammad ;
Ansari, Mohammad Afajal .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (02)
[2]   Lie Maps on Triangular Algebras Without Assuming Unity [J].
Behfar, Roonak ;
Ghahramani, Hoger .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
[3]   Centralizers of Lie Structure of Triangular Algebras [J].
Fadaee, B. ;
Fosner, A. ;
Ghahramani, H. .
RESULTS IN MATHEMATICS, 2022, 77 (06)
[4]   Lie centralizers at the zero products on generalized matrix algebras [J].
Fadaee, B. ;
Ghahramani, H. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (08)
[5]   LIE TRIPLE CENTRALIZERS ON GENERALIZED MATRIX ALGEBRAS [J].
Fadaee, Behrooz ;
Ghahramani, Hoger ;
Jing, Wu .
QUAESTIONES MATHEMATICAE, 2023, 46 (02) :281-300
[6]  
FOSNER A., Rocky Mountain J. Math
[7]   LIE CENTRALIZERS ON TRIANGULAR RINGS AND NEST ALGEBRAS [J].
Fosner, Ajda ;
Jing, Wu .
ADVANCES IN OPERATOR THEORY, 2019, 4 (02) :342-350
[8]   Lie centralizers and commutant preserving maps on generalized matrix algebras [J].
Ghahramani, Hoger ;
Mokhtari, Amir Hossein ;
Wei, Feng .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (05)
[9]   Lie centralizers at zero products on a class of operator algebras [J].
Ghahramani, Hoger ;
Jing, Wu .
ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (02)
[10]   LINEAR LIE CENTRALIZERS OF THE ALGEBRA OF STRICTLY BLOCK UPPER TRIANGULAR MATRICES [J].
Ghimire, Prakash .
OPERATORS AND MATRICES, 2021, 15 (01) :303-311