N-doped VS2 cathode with shell-anchored structure for enhancing the storage performance of Zn-Ion batteries

被引:0
作者
Lv, Rongguan [1 ]
Yue, Mohan [1 ]
Zhang, Yi [1 ]
He, Lin [1 ]
Wu, Huayu [1 ]
Liu, Yu [1 ]
Wang, Jindi [1 ]
Chang, Yingna [1 ]
Song, Kefan [1 ]
Xing, Rong [1 ]
机构
[1] Yancheng Teachers Univ, Sch Chem & Environm Engn, Yancheng 224000, Peoples R China
关键词
Shell-anchored VS 2 @NSA; Three-step deintercalation mechanism; Hydrothermal method; Aqueous zinc ion batteries; ANODE MATERIALS; HIGH-ENERGY; NANOSHEETS; CHEMISTRY; DIOXIDE;
D O I
10.1016/j.jelechem.2025.119007
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Using a confinement growth strategy, shell-anchored N-doped (NSA) VS2 has been synthesized within hollow mesoporous carbon spheres as a cathode material in aqueous zinc ion batteries (ZIBs). The VS2@NSA composite exhibits a novel three-step deintercalation process across a broad voltage range (0-1 V), significantly boosting Zn2+ storage capacity. Notably, the shell-anchored structure of VS2@NSA effectively mitigates the pulverization and volume expansion issues associated with extensive Zn2+ insertion. Furthermore, VS2@NSA exhibited the excellent cycle stability of 282.4 mA h/g at 1 A/g after 500 cycles. Massive Zn2+ insertion did not cause excessive volume variation and structure destruction that can be effectively inhibited by the confined structure of VS2@NSA.
引用
收藏
页数:8
相关论文
共 51 条
[1]  
Meng H., Ran Q., Dai T., Shi H., Zeng S., Zhu Y., Wen Z., Zhang W., Lang X., Zheng W., Jiang Q., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery, Nano-Micro Lett., 14, (2022)
[2]  
Kovalenko I., Zdyrko B., Magasinki A., Hertzberg B., Milicew Z., Burtovyy R., Luzinov I., Yushin G., A major constituent of brown algae for use in high-capacity Li-ion batteries, Science, 334, pp. 75-79, (2011)
[3]  
Liu H., Sui B., Wang P., Gong Z., Zhang Y., Wu Y., Tang J., Shi F., In situ construction of hydrogel coatings on zinc foil surfaces to improve the stability of aqueous zinc-ion batteries, Solid State Ion., 413, (2024)
[4]  
Dunn B., Kamath H., Taracon J.M., Electrical energy storage for the grid: a battery of choices, Science, 334, pp. 928-935, (2011)
[5]  
Zhang Y., Li Y., Yao S., Ali N., Kong X., Wang J., High-performance organic electrodes for sustainable zinc-ion batteries: Advances, challenges and perspectives, Energy Storage Mater., 71, (2024)
[6]  
Guo M., Li W., Tang W., Tang C., Cao B., He X., Fan C., A p-type small-molecule organic cathode simultaneously for high-voltage Li/Na-based dual-ion full batteries, Energy Storage Mater., 74, (2025)
[7]  
Wang A., Liu D., Yang L., Xu F., Luo D., Dou H., Song M., Xu C., Zhang B., Zheng J., Chen Z., Bai Z., Building stabilized Cu0.17Mn0.03V2O5-<middle dot>2.16H<sub>2</sub>O cathode enables an outstanding room-/low-temperature aqueous Zn-ion batteries, Carbon Energy, 6, (2024)
[8]  
Jia X., Liu C., Wang Z., Huang D., Cao G., Weakly polarized organic cation-modified hydrated vanadium oxides for high-energy efficiency aqueous zinc-ion batteries, Nano-Micro Lett., 16, (2024)
[9]  
Li J., Li Y., Xu W., Huang Q., Liu B., Yao J., Preparation of Na plus preintercalated V<sub>2</sub>O<sub>5</sub>•nH<sub>2</sub>O nanobelts with abundant oxygen vacancies as a high-performance cathode material for aqueous zinc-ion batteries, J. Alloyed Compounds, 1003, (2024)
[10]  
Xia C., Guo J., Lei Y., Liang H., Zhao C., Alshareef H., Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode, Adv. Mater., 30, (2018)