Machine learning approach for predicting the fracture toughness of bulk metallic glasses

被引:0
作者
Guo, Hui [1 ]
Sun, Wenhai [2 ]
Lu, Weiyan [2 ]
Sun, Qinghui [1 ]
Wang, Mingsheng [3 ]
Xu, Limin [4 ]
机构
[1] Jiangxi Acad Sci, Inst Appl Phys, Nanchang 330029, Peoples R China
[2] Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, Shenyang, Peoples R China
[3] Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
[4] Guangdong Univ Technol, Key Lab Photon Technol Integrated Sensing & Commun, Minist Educ, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; fracture toughness; bulk metallic glasses; prediction; NOTCH TOUGHNESS; TEMPERATURE; TRANSITION; PLASTICITY; REGRESSION; BEHAVIOR; DESIGN;
D O I
10.1080/14786435.2025.2484719
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study developed a machine learning (ML) model to accurately predict the fracture toughness, K-Q, of bulk metallic glasses (BMGs). To achieve this goal, this work established a dataset of 85 BMGs from the literature comprising the chemical composition and fracture toughness of these BMGs. Various ML algorithms were then employed to develop predictive models for fracture toughness based on the atomic chemical concentration alone. Among the eight ML models that were compared, the extremely randomised trees regression (ETR) model performed the best performance, with the highest determination coefficient (R-2) of 0.779 and the lowest mean absolute error (MAE) of 11.826 MPa root m on the testing set. The generalizability was shown by the pseudo-ternary diagram AlxNiy-4.5Y4.5Co98.5-x-yLa1.5, which demonstrated how the ETR model predicts K-Q based on chemical composition. These findings indicate that the ETR model is very reliable and has great potential for predicting the fracture toughness of BMGs.
引用
收藏
页数:15
相关论文
共 70 条
[1]   Effect of zirconium purity on the glass-forming-ability and notch toughness of Cu43Zr43Al7Be7 [J].
Andersen, Laura M. ;
Hofmann, Douglas C. ;
Vecchio, Kenneth S. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 674 :397-405
[2]   Metallic glasses as structural materials [J].
Ashby, MF ;
Greer, AL .
SCRIPTA MATERIALIA, 2006, 54 (03) :321-326
[3]  
Benesty J, 2009, SPRINGER TOP SIGN PR, V2, P1, DOI 10.1007/978-3-642-00296-0
[4]   Fracture and fatigue behaviour of a laser additive manufactured Zr-based bulk metallic glass [J].
Best, James P. ;
Ostergaard, Halsey E. ;
Li, Bosong ;
Stolpe, Moritz ;
Yang, Fan ;
Nomoto, Keita ;
Hasib, M. Tarik ;
Muransky, Ondrej ;
Busch, Ralf ;
Li, Xiaopeng ;
Kruzic, Jamie J. .
ADDITIVE MANUFACTURING, 2020, 36 (36)
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   Effect of cast process and microalloying on the fracture toughness of Zr-based bulk amorphous alloys [J].
Chang, Y. S. ;
Hsu, K. T. ;
Li, J. B. ;
Tsai, P. H. ;
Jang, J. S. C. ;
Huang, J. C. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 614 :87-93
[7]   Test sample geometry for fracture toughness measurements of bulk metallic glasses [J].
Chen, Wen ;
Zhou, Haofei ;
Liu, Ze ;
Ketkaew, Jittisa ;
Shao, Ling ;
Li, Ning ;
Gong, Pan ;
Samela, William ;
Gao, Huajian ;
Schroers, Jan .
ACTA MATERIALIA, 2018, 145 :477-487
[8]   Flaw tolerance of metallic glasses [J].
Chen, Wen ;
Liu, Ze ;
Ketkaew, Jittisa ;
Mota, Rodrigo Miguel Ojeda ;
Kim, Sung-Hyun ;
Power, Michael ;
Samela, William ;
Schroers, Jan .
ACTA MATERIALIA, 2016, 107 :220-228
[9]   Does the fracture toughness of bulk metallic glasses scatter? [J].
Chen, Wen ;
Ketkaew, Jittisa ;
Liu, Ze ;
Mota, Rodrigo Miguel Ojeda ;
O'Brien, Kevin ;
da Silva, Caio Sene ;
Schroers, Jan .
SCRIPTA MATERIALIA, 2015, 107 :1-4
[10]   Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods [J].
Cubuk, E. D. ;
Schoenholz, S. S. ;
Rieser, J. M. ;
Malone, B. D. ;
Rottler, J. ;
Durian, D. J. ;
Kaxiras, E. ;
Liu, A. J. .
PHYSICAL REVIEW LETTERS, 2015, 114 (10)