Performance-Dryout Limits of Oscillating Heat Pipes: A Comprehensive Theoretical and Experimental Determination

被引:0
作者
Diaz-Caraveo, Cesar [1 ]
Wolk, Kieran [2 ]
Miesner, Spencer [3 ]
Montemayor, Maxwell [4 ]
Rodriguez, Arturo [1 ]
Kumar, Vinod [1 ]
Munoz, Jorge A. [1 ]
Daimaru, Takuro [5 ]
Furst, Benjamin I. [5 ]
Roberts, Scott N. [5 ]
机构
[1] Univ Texas Paso, El Paso, TX 79968 USA
[2] Univ Calif Angeles, Los Angeles, CA 90095 USA
[3] Calif State Univ Angeles, Los Angeles, CA 90032 USA
[4] CALTECH, Pasadena, CA 91125 USA
[5] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91109 USA
基金
美国国家科学基金会;
关键词
Oscillating Heat Pipe; Aerospace Sciences; Heating; Ventilating; and Air Conditioning; Convection Heat Transfer Coefficient; Thermocouples; Thermodynamic Properties; Electronics Cooling; Research Facilities and Instrumentation; Fluid Mechanics; Computer-Aided Manufacturing; PART;
D O I
10.2514/1.T6955
中图分类号
O414.1 [热力学];
学科分类号
摘要
The performance limits of oscillating heat pipes (OHPs) have been the subject of research in recent years in order to understand their limitations and allow their broad application in the aerospace field. The present work describes the experimental determination of the performance dryout limits for an additively manufactured OHP geometry filled with R-134a and R-123, as well as the performance limits theoretical predictions using a recently developed analytical approach. Thermal experiments were carried out using a constant-temperature cold-plate approach at three cold plate temperatures, allowing the OHP device to reach steady state for each power step. Results show good agreement for the performance limits predictions with experimental data for both working fluids R-134a and R-123, opening the way for the analytical framework to be used in the design and development of OHPs.
引用
收藏
页码:289 / 299
页数:11
相关论文
共 37 条
  • [1] Closed loop pulsating heat pipes - Part A: parametric experimental investigations
    Charoensawan, P
    Khandekar, S
    Groll, M
    Terdtoon, P
    [J]. APPLIED THERMAL ENGINEERING, 2003, 23 (16) : 2009 - 2020
  • [2] A Mathematical Model of an Oscillating Heat Pipe
    Cheng, Peng
    Ma, Hongbin
    [J]. HEAT TRANSFER ENGINEERING, 2011, 32 (11-12) : 1037 - 1046
  • [3] An Investigation of Flat-Plate Oscillating Heat Pipes
    Cheng, Peng
    Thompson, Scott
    Boswell, Joe
    Ma, H. B.
    [J]. JOURNAL OF ELECTRONIC PACKAGING, 2010, 132 (04)
  • [4] Comparison between numerical simulation and on-orbit experiment of oscillating heat pipes
    Daimaru, Takurou
    Nagai, Hiroki
    Ando, Makiko
    Tanaka, Kosuke
    Okamoto, Atsushi
    Sugita, Hiroyuki
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 109 : 791 - 806
  • [5] Study on thermal cycle in oscillating heat pipes by numerical analysis
    Daimaru, Takurou
    Yoshida, Shuhei
    Nagai, Hiroki
    [J]. APPLIED THERMAL ENGINEERING, 2017, 113 : 1219 - 1227
  • [6] Dittus F.W., 1985, U CALIF BERKELEY PUB, V12, P3, DOI DOI 10.1016/0735-1933(85)90003-X
  • [7] Advanced Structurally Embedded Thermal Spreader Oscillating Heat Pipe Micro-Gravity Flight Experiment
    Drolen, Bruce L.
    Wilson, Corey A.
    Taft, Brenton S.
    Allison, Jonathan
    Irick, Kevin W.
    [J]. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2022, 36 (02) : 314 - 327
  • [8] Performance Limits of Oscillating Heat Pipes: Theory and Validation
    Drolen, Bruce L.
    Smoot, Christopher D.
    [J]. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2017, 31 (04) : 920 - 936
  • [9] Eninger J., 1977, 12 THERMOPHYSICS C, DOI DOI 10.2514/6.1977-748
  • [10] Hisateru Akach, Patent No. [US4921041A, 4921041]