Development of embedded graphitic-sandwich structures in single-crystal synthetic diamond via ultrafast laser micromachining

被引:0
作者
Canfield, Brian K. [1 ]
Terekhov, Alexander [1 ]
Moeller, Trevor M. [1 ]
Costa, Lino [1 ]
Kerns, David [2 ]
Hess, Glenn [2 ]
Davidson, Jimmy [2 ]
Wade, Travis [2 ]
Fraley, John [2 ,3 ]
May, Steven [4 ]
Viste, Mark [4 ]
机构
[1] Univ Tennessee Space Inst UTSI, Ctr Laser Applicat, 411 B H Goethert Pkwy, MS 35, Tullahoma, TN 37388 USA
[2] Int FemtoSci Inc FemtoSci, 179 Belle Forest Circle,Suite 203, Nashville, TN 37205 USA
[3] Missionshire LLC, 1406 Mission Blvd, Fayetteville, AR 72701 USA
[4] Medtronic, 710 Medtron Pkwy, Minneapolis, MN 55432 USA
关键词
synthetic diamond; ultrafast laser micromachining; graphitization; Bessel beam; conductivity; capacitance; ELECTRODES; DETECTOR; DEPENDENCE;
D O I
10.2351/7.0001548
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We discuss the direct fabrication of embedded, graphitized features within high-purity, synthetic single-crystal diamond through ultrafast laser micromachining for the purpose of developing diamond-based capacitive structures. As an incorporating substrate, carbon in the form of highly pure synthetic diamond offers numerous advantageous physicochemical properties, including hardness, durability, optical transparency, and extremely high electrical resistance. On the other hand, graphitic carbon can exhibit exceptionally low electrical resistance. A simple sandwich structure of a thin sheet of diamond between two sheets of graphite could, therefore, form a simple plate-type capacitive structure. For a single structure consisting of 1 mu m thick plates with areal dimensions of 5 x 1 mm(2 )and 1 mu m gaps between plates, we estimate a capacitance of 240 pF, with a 3 kV/mu m breakdown voltage in diamond. similar to 2500 plates thus fabricated in a similar to 5 x 5 x 1 mm(3) diamond chip could, therefore, store similar to 300 mJ of energy. To realize this kind of structure, we employ ultrafast laser micromachining with high numerical aperture focusing and precise positioning control to disrupt the crystalline matrix of a well-confined volume within single-crystal synthetic diamond, forming embedded graphitic features. Graphitized plate regions 1 mu m thick with 1 mu m separations can be fabricated in this manner, and empirical I-V measurements indicate resistances in the plates as low as similar to k Omega. We also address challenges involved with fabricating closely parallel, embedded graphitic plates in thick diamond substrates, including aberration, machining time, and cracking.
引用
收藏
页数:10
相关论文
共 54 条
[1]   Femtosecond laser micromachining of diamond: Current research status, applications and challenges [J].
Ali, Bakhtiar ;
Litvinyuk, Igor V. ;
Rybachuk, Maksym .
CARBON, 2021, 179 :209-226
[2]  
[Anonymous], 2018, Zemax OpticStudio version 18.7
[3]   Ultrafast Laser Processing of Diamond Materials: A Review [J].
Apostolova, Tzveta ;
Kurylo, Vasyl ;
Gnilitskyi, Iaroslav .
FRONTIERS IN PHYSICS, 2021, 9
[4]   A 3D diamond detector for particle tracking [J].
Artuso, M. ;
Bachmair, F. ;
Bani, L. ;
Bartosik, M. ;
Beacham, J. ;
Bellini, V. ;
Belyaev, V. ;
Bentele, B. ;
Berdermann, E. ;
Bergonzo, P. ;
Bes, A. ;
Brom, J-M. ;
Bruzzi, M. ;
Cerv, M. ;
Chau, C. ;
Chiodini, G. ;
Chren, D. ;
Cindro, V. ;
Claus, G. ;
Collot, J. ;
Costa, S. ;
Cumalat, J. ;
Dabrowski, A. ;
D'Alessandro, R. ;
de Boer, W. ;
Dehning, B. ;
Dobos, D. ;
Dunser, M. ;
Eremin, V. ;
Eusebi, R. ;
Forcolin, G. ;
Forneris, J. ;
Frais-Koelbl, H. ;
Gan, K. K. ;
Gastal, M. ;
Goffe, M. ;
Goldstein, J. ;
Golubev, A. ;
Gonella, L. ;
Gorisek, A. ;
Graber, L. ;
Grigoriev, E. ;
Grosse-Knetter, J. ;
Gui, B. ;
Guthoff, M. ;
Haughton, I. ;
Hidas, D. ;
Hits, D. ;
Hoeferkamp, M. ;
Hofmann, T. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 824 :402-405
[5]   Internal structure and conductivity of laser-induced graphitized wires inside diamond [J].
Ashikkalieva, K. K. ;
Kononenko, T. V. ;
Ashkinazi, E. E. ;
Obraztsova, E. A. ;
Mikhutkin, A. A. ;
Timofeev, A. A. ;
Konov, V. I. .
DIAMOND AND RELATED MATERIALS, 2022, 128
[6]   Laser-Induced Graphitization of Diamond Bulk: The State of the Art (A Review) [J].
Ashikkalieva, K. K. .
PHYSICS OF WAVE PHENOMENA, 2022, 30 (01) :1-16
[7]   A 3D diamond detector for particle tracking [J].
Bachmair, F. ;
Baeni, L. ;
Bergonzo, P. ;
Caylar, B. ;
Forcolin, G. ;
Haughton, I. ;
Hits, D. ;
Kagan, H. ;
Kass, R. ;
Li, L. ;
Oh, A. ;
Phan, S. ;
Pomorski, M. ;
Smith, D. S. ;
Tyzhneyyi, V. ;
Wallny, R. ;
Whitehead, D. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 786 :97-104
[8]  
Barnaal D., 1982, Analog Electronics for Scientific Applications, P366
[9]   Femtosecond laser written photonic and microfluidic circuits in diamond [J].
Bharadwaj, Vibhav ;
Jedrkiewicz, Ottavia ;
Hadden, J. P. ;
Sotillo, Belen ;
Vazquez, Maria Ramos ;
Dentella, Paola ;
Fernandez, Toney T. ;
Chiappini, Andrea ;
Giakoumaki, Argyro N. ;
Thien Le Phu ;
Bollani, Monica ;
Ferrari, Maurizio ;
Ramponi, Roberta ;
Barclay, Paul E. ;
Eaton, Shane M. .
JOURNAL OF PHYSICS-PHOTONICS, 2019, 1 (02)
[10]  
Blue T. E, 2019, Final Technical Report No. 15-8074