Servo robust control of cyber-physical systems with physical uncertainty and cyber interference

被引:0
|
作者
Yu, Rongrong [1 ]
Zhao, Xu [1 ]
Liu, Mingxin [1 ]
Chen, Ye-Hwa [2 ]
Tian, Ying [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Mech & Elect Engn, Qingdao 266590, Shandong, Peoples R China
[2] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
Cyber-physical system; Physical uncertainty; Cyber interference; Servo robust control; Non-cooperative game; Stackelberg strategy; TRACKING CONTROL; CONSTRAINTS;
D O I
10.1016/j.isatra.2025.02.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cyber-physical system (CPS) is a complex system that integrates cyber, computer system, and physical system. Due to the large amount of information transmitted by CPS in real time, there are physical uncertainty and serious security risks, so how to accurately and effectively realize the accurate control of the CPS becomes a challenging task. In this paper, we comprehensively consider the physical uncertainty and cyber interference that the CPS may face, and then design a Servo Robust Control (SRC). The control design is divided into two phases. In the first phase, a novel control scheme is proposed to ensure that the system can maintain stable performance in the face of physical uncertainty and cyber interference. The second phase is the optimal design of control parameters. Since the selection of control parameters seriously affects the performance of the system, multi-objective parameter optimization methods (non-cooperative game and Stackelberg strategy) are used to study the optimal selection of control parameters. Finally, the proposed SRC is applied to a typical CPS (i.e., autonomous vehicle) for verification. The effectiveness and superiority of this method are verified by comparing with other control methods.
引用
收藏
页码:55 / 65
页数:11
相关论文
共 50 条
  • [1] Improved control of cyber-physical systems subject to cyber and physical attacks
    Mahmoud M.S.
    Hamdan M.M.
    Cyber-Physical Systems, 2019, 5 (03) : 173 - 190
  • [2] Uncertainty in Coupled Models of Cyber-Physical Systems
    Acosta, Maribel
    Hahner, Sebastian
    Koziolek, Anne
    Kuehn, Thomas
    Mirandola, Raffaela
    Reussner, Ralf
    ACM/IEEE 25TH INTERNATIONAL CONFERENCE ON MODEL DRIVEN ENGINEERING LANGUAGES AND SYSTEMS, MODELS 2022 COMPANION, 2022, : 569 - 578
  • [3] Distributed Control for Cyber-Physical Systems
    Mangharam, Rahul
    Pajic, Miroslav
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2013, 93 (03) : 353 - 387
  • [4] On The Economic Control of Cyber-physical Systems
    Agarwal, Shaurya
    Kachroo, Pushkin
    2017 IEEE 7TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2017, : 86 - 90
  • [5] On the Economic Control of Cyber-physical Systems
    Agarwal, Shaurya
    Kachroo, Pushkin
    2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, CYBER 2017, 2018, : 86 - 90
  • [6] Predictive Control of Cyber-Physical Systems
    Maestre J.M.
    Chanfreut P.
    Martín J.G.
    Masero E.
    Inoue M.
    Camacho E.F.
    RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 2021, 19 (01): : 1 - 12
  • [7] Resilient Control in Cyber-Physical Systems
    Weerakkody, Sean
    Ozel, Omur
    Mo, Yilin
    Sinopoli, Bruno
    FOUNDATIONS AND TRENDS IN SYSTEMS AND CONTROL, 2019, 7 (1-2): : 1 - 252
  • [8] Predictive Control of Cyber-Physical Systems
    Maria Maestre, Jose
    Chanfreut, Paula
    Garcia Martin, Javier
    Masero, Eva
    Inoue, Masaki
    Camacho, Eduardo F.
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2022, 19 (01): : 1 - 12
  • [9] Cyber-physical Systems
    Wolf, Wayne
    COMPUTER, 2009, 42 (03) : 88 - 89
  • [10] Robust Design and Validation of Cyber-physical Systems
    Sood, Surinder
    Malik, Avinash
    Roop, Partha
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2020, 18 (06)