Achieving Superior Electrochemical Performance of Li-Rich Cathode Materials with a Uniform Li4Mn5O12@PDA-Li2SO4 Coating Layer by a One-Step Approach

被引:0
作者
Liang, Zhanshuo [1 ,2 ,3 ]
Wang, Cuifeng [1 ,2 ,3 ]
Li, Guohua [1 ,2 ,3 ]
Zhuo, Haoxiang [1 ,2 ,3 ]
Guo, Lihao [1 ,2 ,3 ]
Liu, Haolin [1 ,2 ,3 ]
Jin, Zhihao [1 ,2 ,3 ]
Ren, Zhimin [1 ,2 ,3 ]
Wang, Jiantao [1 ,2 ,3 ]
机构
[1] GRINM Grp Corp Ltd, Natl Power Battery Innovat Ctr, Beijing 100088, Peoples R China
[2] China Automot Battery Res Inst Co Ltd, Beijing 100088, Peoples R China
[3] Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2025年
关键词
Li-rich layered oxides; Li4Mn5O12@PDA-Li2SO4; Fast ionconduction; Phase transition suppression; High-rateperformance; HIGH-CAPACITY; OXYGEN VACANCIES; VOLTAGE-FADE; LITHIUM; REDOX; LI1.2MN0.54NI0.13CO0.13O2; ORIGIN; MN; MECHANISM; DOPAMINE;
D O I
10.1021/acsaem.4c02917
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-rich Mn-rich layered oxides (LLOs) are considered key cathode candidates for next-generation lithium-ion batteries (LIBs) because of their high specific capacity that owes to the anionic redox. However, the poor cycling performance, low initial Coulombic efficiency, and unsatisfactory rate performance of LLOs hinder their practical application. Herein, a uniform multifunctional Layered@Li4Mn5O12@PDA-Li2SO4 coating layer is constructed on the surface of a Li-rich material by a simple one-step process. By constructing a zero-strain Li4Mn5O12 spinel with more Mn4+ on the particle surface, the Jahn-Teller effect and the resulting manganese dissolution can be avoided. PDA provides a chemical protective layer that can reduce the growth of an undesirable cathode electrolyte interphase and also promotes the rapid ion migration of electrons/ions. This coating layer can significantly improve the initial Coulombic efficiency (ICE), rate performances, and cycling stability of the material. The as-prepared LLO exhibits a greatly strengthened specific capacity of 270.2 mAh/g with an enhanced ICE of 83.38% and long-term cyclability of 79.14% retention after 500 cycles. The as-prepared LLO's discharge specific capacity at 10C is 131 mAh/g, whereas the pristine LLO only has 93 mAh/g. This study elucidates the mechanism of the composite surface structure and establishes the relationship between lithium-ion interfacial conductivity and electrochemical performance, offering a strategy for near-surface design of LLOs in high-energy-density LIBs.
引用
收藏
页码:4166 / 4175
页数:10
相关论文
共 49 条
  • [1] Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2
    Armstrong, A. Robert
    Holzapfel, Michael
    Novak, Petr
    Johnson, Christopher S.
    Kang, Sun-Ho
    Thackeray, Michael M.
    Bruce, Peter G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) : 8694 - 8698
  • [2] Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes
    Assat, Gaurav
    Foix, Dominique
    Delacourt, Charles
    Iadecola, Antonella
    Dedryvere, Remi
    Tarascon, Jean-Marie
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [3] Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries
    Chen, Cheng
    Geng, Tianfeng
    Du, Chunyu
    Zuo, Pengjian
    Cheng, Xinqun
    Ma, Yulin
    Yin, Geping
    [J]. JOURNAL OF POWER SOURCES, 2016, 331 : 91 - 99
  • [4] Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes as cathode materials for high-performance lithium-ion batteries
    Chen, Yangwen
    Wang, Xinchang
    Zhang, Jiajia
    Chen, Baiyuan
    Xu, Junmin
    Zhang, Sen
    Zhang, Liwei
    [J]. RSC ADVANCES, 2019, 9 (04): : 2172 - 2179
  • [5] Durable polydopamine-coated porous sulfur core-shell cathode for high performance lithium-sulfur batteries
    Deng, Yuanfu
    Xu, Hui
    Bai, Zhaowen
    Huang, Baoling
    Su, Jingyang
    Chen, Guohua
    [J]. JOURNAL OF POWER SOURCES, 2015, 300 : 386 - 394
  • [6] Study of lithium ion conducting glasses with Li2SO4 addition
    Deshpande, V. K.
    Salorkar, Megha A.
    Nagpure, Nalini
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2020, 527 (527)
  • [7] Multifunctional self-reconstructive cathode/electrolyte interphase layer for cobalt-free Li-rich layered oxide cathode
    Dong, Jinyang
    Wu, Feng
    Zhao, Jiayu
    Shi, Qi
    Lu, Yun
    Li, Ning
    Cao, Duanyun
    Li, Wenbo
    Hao, Jianan
    Yang, Xulai
    Chen, Lai
    Su, Yuefeng
    [J]. ENERGY STORAGE MATERIALS, 2023, 60
  • [8] Design Rules for High-Valent Redox in Intercalation Electrodes
    Gent, William E.
    Abate, Iwnetim Iwnetu
    Yang, Wanli
    Nazar, Linda F.
    Chueh, William C.
    [J]. JOULE, 2020, 4 (07) : 1369 - 1397
  • [9] Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides
    Gent, William E.
    Lim, Kipil
    Liang, Yufeng
    Li, Qinghao
    Barnes, Taylor
    Ahn, Sung-Jin
    Stone, Kevin H.
    McIntire, Mitchell
    Hong, Jihyun
    Song, Jay Hyok
    Li, Yiyang
    Mehta, Apurva
    Ermon, Stefano
    Tyliszczak, Tolek
    Kilcoyne, David
    Vine, David
    Park, Jin-Hwan
    Doo, Seok-Kwang
    Toney, Michael F.
    Yang, Wanli
    Prendergast, David
    Chueh, William C.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [10] Challenges for Rechargeable Li Batteries
    Goodenough, John B.
    Kim, Youngsik
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (03) : 587 - 603