Soil nutrients and pH modulate carbon dynamics in particulate and mineral-associated organic matter during restoration of a Tibetan alpine grassland

被引:1
|
作者
Wang, Kaini [1 ]
Ma, Zhiwen [2 ]
Qin, Wenping [1 ]
Li, Xiaoyan [1 ]
Shi, Hongxiao [3 ,4 ]
Hasi, Bagen [3 ,4 ]
Liu, Xiang [1 ,4 ]
机构
[1] Qinghai Univ, State Key Lab Plateau Ecol & Agr, Xining 810016, Peoples R China
[2] Northeast Normal Univ, Sch Geog Sci, Key Lab Geog Proc & Ecol Secur Changbai Mt, Minist Educ, Changchun 130024, Peoples R China
[3] Chinese Acad Agr Sci, Inst Grassland Res, Hohhot 010010, Peoples R China
[4] Natl Agr Expt Stn Soil Qual, Yushu 815199, Chengduo, Peoples R China
基金
中国国家自然科学基金;
关键词
Particulate organic carbon; Mineral-associated organic carbon; Soil organic carbon sequestration; Alpine grassland; Ecological restoration; SEQUESTRATION; ROOT; STABILIZATION; DIVERSITY; STOCKS; POOLS; CO2;
D O I
10.1016/j.ecoleng.2025.107522
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Nature-based solutions have been proven effective in restoring soil organic carbon (SOC) levels within globally degraded grasslands. Nevertheless, the responses of C in particulate organic matter and mineral-associated organic matter to various grassland restoration strategies, especially in alpine grasslands, remain insufficiently addressed. In this study, we assessed the impacts of two nature-based solutions-grazing exclusion (natural restoration) and no-tillage reseeding (interventional restoration) on the dynamics of particulate organic C (POC) and mineral-associated organic C (MAOC) in an alpine grassland ecosystem on the eastern Tibetan Plateau. The results revealed that 12 years of restoration efforts significantly increased the content of soil total organic C (TOC) by 82.1-110.5 %. The SOC pool was primarily composed of MAOC, with its contribution varying from 52.3 % to 65.1 % across all experimental plots. After a 12-year restoration period, the contents of POC and MAOC in the bulk soil increased by 88.8-125.1 % and 46.8-51.8 %, respectively, indicating that POC is more responsive to restoration than MAOC. As a consequence, an enhanced proportion of POC within the TOC pool was observed at the reseeded plot. The accumulation of POC induced by the restoration process was primarily attributed to the enrichment of soil nutrient content, followed by the improved root quality. By comparison, the decline in soil pH emerged as a pivotal factor accounting for the increase in MAOC following restoration. The contents, stocks, and relative proportions of both POC and MAOC were generally comparable between the two restored plots. Nevertheless, the significantly higher contribution of MAOC to the TOC pool compared to POC at the naturally recovered plot implies that grazing exclusion favors the accumulation of stable C over labile C. Furthermore, we found that MAOC has not yet attained saturation levels at either of the restored plots. Notably, the naturally recovered plot exhibited a superior maximum capacity for MAOC compared to the reseeded plot. Our findings suggest that stratifying the SOC pool into POC and MAOC provides valuable insights into the dynamics, stability, saturation levels, and controlling factors of SOC in restored alpine grassland ecosystems.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Glucoproteins in particulate and mineral-associated organic matter pools during grassland restoration
    Li, Yao
    Buckeridge, Kate
    Wang, Baorong
    Li, Huijun
    Yao, Hongjia
    Yang, Env
    An, Shaoshan
    Filimonenko, Ekaterina
    Kuzyakov, Yakov
    CATENA, 2024, 247
  • [2] Divergent contribution of particulate and mineral-associated organic matter to soil carbon in grassland
    Liao, Jiaojiao
    Yang, Xuan
    Dou, Yanxing
    Wang, Baorong
    Xue, Zhijing
    Sun, Hui
    Yang, Yang
    An, Shaoshan
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 344
  • [3] Soil carbon storage informed by particulate and mineral-associated organic matter
    M. Francesca Cotrufo
    Maria Giovanna Ranalli
    Michelle L. Haddix
    Johan Six
    Emanuele Lugato
    Nature Geoscience, 2019, 12 : 989 - 994
  • [4] Soil carbon storage informed by particulate and mineral-associated organic matter
    Cotrufo, M. Francesca
    Ranalli, Maria Giovanna
    Haddix, Michelle L.
    Six, Johan
    Lugato, Emanuele
    NATURE GEOSCIENCE, 2019, 12 (12) : 989 - +
  • [5] Global turnover of soil mineral-associated and particulate organic carbon
    Zhou, Zhenghu
    Ren, Chengjie
    Wang, Chuankuan
    Delgado-Baquerizo, Manuel
    Luo, Yiqi
    Luo, Zhongkui
    Du, Zhenggang
    Zhu, Biao
    Yang, Yuanhe
    Jiao, Shuo
    Zhao, Fazhu
    Cai, Andong
    Yang, Gaihe
    Wei, Gehong
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [6] The effect of land degradation and restoration on particulate and mineral-associated organic carbon
    Zhang, Hong
    Liu, Guihua
    Wu, Junjun
    APPLIED SOIL ECOLOGY, 2024, 196
  • [7] Particulate organic carbon is more vulnerable to nitrogen addition than mineral-associated organic carbon in soil of an alpine meadow
    Chen, Ying
    Liu, Xiang
    Hou, Yanhui
    Zhou, Shurong
    Zhu, Biao
    PLANT AND SOIL, 2021, 458 (1-2) : 93 - 103
  • [8] Particulate organic carbon is more vulnerable to nitrogen addition than mineral-associated organic carbon in soil of an alpine meadow
    Ying Chen
    Xiang Liu
    Yanhui Hou
    Shurong Zhou
    Biao Zhu
    Plant and Soil, 2021, 458 : 93 - 103
  • [9] Different climate sensitivity of particulate and mineral-associated soil organic matter
    Emanuele Lugato
    Jocelyn M. Lavallee
    Michelle L. Haddix
    Panos Panagos
    M. Francesca Cotrufo
    Nature Geoscience, 2021, 14 : 295 - 300
  • [10] Soil aggregate formation and the accrual of particulate and mineral-associated organic matter
    Jastrow, JD
    SOIL BIOLOGY & BIOCHEMISTRY, 1996, 28 (4-5): : 665 - 676