In the field of deep learning, traditional image classification tasks typically require extensive annotated data-sets and complex model training processes, which pose significant challenges for deployment on resource-con-strained edge devices. To address these challenges, this study introduces a few-shot learning method based on OpenAI's CLIP model that significantly reduces computational demands by eliminating the need to run a text encoder at the inference stage. By pre-computing the embedding centers of classification text with a small set of image-text data, our approach enables the direct use of CLIP's image encoder and pre-calculated text embeddings for efficient image classification. This adaptation not only allows for high-precision classification tasks on edge devices with limited computing capabilities but also achieves accuracy and recall rates that close-ly approximate those of the pre-trained ResNet approach while using far less data. Furthermore, our method halves the memory usage compared to other large-scale visual models of similar capacity by avoiding the use of a text encoder during inference, making it particularly suitable for low-resource environments. This com-parative advantage underscores the efficiency of our approach in handling few-shot image classification tasks, demonstrating both competitive accuracy and practical viability in resource-limited settings. The outcomes of this research not only highlight the potential of the CLIP model in few-shot learning scenarios but also pave a new path for efficient, low-resource deep learning applications in edge computing environments