A highly Sensitive Refractive Index Sensor Based on Fano Resonance in the Near-Infrared Band

被引:0
|
作者
Liu, Jiatang [1 ]
Li, Shilei [1 ]
Qi, Yanan [1 ]
Chen, Shuai [1 ]
机构
[1] Shandong Univ Technol, Sch Phys & Optoelect Engn, Zibo 255049, Peoples R China
基金
中国国家自然科学基金;
关键词
Fano resonance; Refractive index sensor; Metasurface; Near-infrared band; METAMATERIAL;
D O I
10.1007/s11468-025-02792-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the near-infrared band, this paper proposes a highly sensitive all-dielectric metasurface refractive index sensor structure based on the Fano resonance, three performance index parameters of the sensor structure, the sensitivity, the figure of merit, and Q-factor can reach high values at the same time. In this paper, the transmission characteristics of the structure are simulated and analysed using the Finite difference time domain method. Firstly, the cause of the Fano resonance of the structure is theoretically explained, and at the same time the theoretical curves are fitted to the simulation curves. Secondly, the formation mechanism of this Fano resonance was further analysed through the electric field phase diagram, and the influence of the geometrical parameters of the structure on the sensing performance of the structure was investigated, while the geometrical parameters of the structure were optimised. Finally, the sensitivity of the structure was calculated to be as high as 1150 nm/RIU, the figure of merit of 1.917 x 104 and Q-factor of 3.365 x 104 under the optimal structural geometrical parameters, It can be seen that the three performance index parameters of sensitivity, the figure of merit and Q-factor of the structure can reach high values at the same time, and the structure has superior sensing performance. In the near-infrared band, this structure can provide an effective way to improve the performance of all-dielectric metasurface refractive index sensors.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Numerical analysis of near-infrared plasmonic filter with high figure of merit based on Fano resonance
    Mao, JingJing
    Zhai, Xiang
    Wang, LingLing
    Li, HongJu
    APPLIED PHYSICS EXPRESS, 2017, 10 (08)
  • [32] Multiple Fano Resonance Modes based Plasmonic Refractive Index Sensor for Edible Oil Adulteration Detection
    Sharmin, Sabiha
    Yousuf, Mohammad Abu
    Islam, Nazrul
    Optik, 2024, 312
  • [33] A high figure of merit refractive index sensor based on Fano resonance in all-dielectric metasurface
    Su, Wei
    Ding, Yimin
    Luo, Yinlong
    Liu, Yan
    RESULTS IN PHYSICS, 2020, 16
  • [34] Highly Sensitive Surface Plasmon Resonance Based D-Shaped Photonic Crystal Fiber Refractive Index Sensor
    Rahul Kumar Gangwar
    Vinod Kumar Singh
    Plasmonics, 2017, 12 : 1367 - 1372
  • [35] A MIM Waveguide Structure of a High-Performance Refractive Index and Temperature Sensor Based on Fano Resonance
    Liu, Pengwei
    Yan, Shubin
    Ren, Yifeng
    Zhang, Xiaoyu
    Li, Tingsong
    Wu, Xiushan
    Shen, Lifang
    Hua, Ertian
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [36] Highly Sensitive Surface Plasmon Resonance Based D-Shaped Photonic Crystal Fiber Refractive Index Sensor
    Gangwar, Rahul Kumar
    Singh, Vinod Kumar
    PLASMONICS, 2017, 12 (05) : 1367 - 1372
  • [37] Highly Sensitive Refractive Index Sensor Based on Vernier Effect in Coupled Micro-Ring Resonators
    Chen, Tong
    Zhang, Hao
    Lin, Wei
    Liu, Haifeng
    Liu, Bo
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (04) : 1216 - 1223
  • [38] Fano Resonance in the Plasmonic Structure of MIM Waveguide with r-Shaped Resonator for Refractive Index Sensor
    Siti Rohimah
    He Tian
    Jinfang Wang
    Jianfeng Chen
    Jina Li
    Xing Liu
    Jingang Cui
    Qiang Xu
    Yu Hao
    Plasmonics, 2022, 17 : 1681 - 1689
  • [39] Fano Resonance in the Plasmonic Structure of MIM Waveguide with r-Shaped Resonator for Refractive Index Sensor
    Rohimah, Siti
    Tian, He
    Wang, Jinfang
    Chen, Jianfeng
    Li, Jina
    Liu, Xing
    Cui, Jingang
    Xu, Qiang
    Hao, Yu
    PLASMONICS, 2022, 17 (04) : 1681 - 1689
  • [40] Highly sensitive miniaturized refractive index sensor based on polarization rotation in optical waveguide
    Hsu, Chih-Wei
    Chen, Jhen-Yu
    Cheng, Yung-Chen
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON APPLIED SYSTEM INNOVATION (ICASI), 2016,