Prior Images Guided Generative Autoencoder Model for Dual-Camera Compressive Spectral Imaging

被引:4
作者
Chen, Yurong [1 ,2 ]
Wang, Yaonan [1 ,2 ]
Zhang, Hui [1 ,3 ]
机构
[1] Hunan Univ, Natl Engn Res Ctr Robot Visual Percept & Control, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[3] Hunan Univ, Sch Robot, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressive spectral imaging; snapshot imaging; computational imaging; compressive sensing; DESIGN;
D O I
10.1109/TCSVT.2024.3388461
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compressive Spectral Imaging (CSI) techniques have attracted considerable attention among researchers for their ability to simultaneously capture spatial and spectral information using low-cost, compact optical components. A prominent example of CSI techniques is the Dual-Camera Coded Aperture Snapshot Spectral Imaging (DC-CASSI), which involves reconstructing hyperspectral images from CASSI measurements and uncoded panchromatic or RGB images. Despite its significance, the reconstruction process in DC-CASSI is challenging. Conventional DC-CASSI techniques rely on different models to explore the similarity between uncoded images and hyperspectral images. Nevertheless, two main issues persist: i) the effective utilization of spatial information from RGB images to guide the reconstruction process, and ii) the enhancement of spectral consistency of recovered images when using panchromatic/RGB images, which inherently lack precise spectral information. To address these challenges, we propose a novel Prior images guided generative autoEncoder (PiE) model. The PiE model leverages RGB images as prior information to enhance spatial details and designs a generative model to improve spectral quality. Notably, the generative model is optimized in a self-supervised manner. Comprehensive experimental results demonstrate that the proposed PiE method outperforms existing techniques, achieving state-of-the-art performance.
引用
收藏
页码:8629 / 8643
页数:15
相关论文
共 54 条
[1]   Compressive Coded Aperture Spectral Imaging [J].
Arce, Gonzalo R. ;
Brady, David J. ;
Carin, Lawrence ;
Arguello, Henry ;
Kittle, David S. .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :105-115
[2]   Colored Coded Aperture Design by Concentration of Measure in Compressive Spectral Imaging [J].
Arguello, Henry ;
Arce, Gonzalo R. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (04) :1896-1908
[3]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[4]  
Cai YH, 2022, ADV NEUR IN
[5]   Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image Reconstruction [J].
Cai, Yuanhao ;
Lin, Jing ;
Hu, Xiaowan ;
Wang, Haoqian ;
Yuan, Xin ;
Zhang, Yulun ;
Timofte, Radu ;
Van Gool, Luc .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :17481-17490
[6]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[7]   A Prism-Mask System for Multispectral Video Acquisition [J].
Cao, Xun ;
Du, Hao ;
Tong, Xin ;
Dai, Qionghai ;
Lin, Stephen .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (12) :2423-2435
[8]  
Chambolle A, 2004, J MATH IMAGING VIS, V20, P89
[9]   An Upwind Finite-Difference Method for Total Variation-Based Image Smoothing [J].
Chambolle, Antonin ;
Levine, Stacey E. ;
Lucier, Bradley J. .
SIAM JOURNAL ON IMAGING SCIENCES, 2011, 4 (01) :277-299
[10]   Plug-and-Play ADMM for Image Restoration: Fixed-Point Convergence and Applications [J].
Chan, Stanley H. ;
Wang, Xiran ;
Elgendy, Omar A. .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2017, 3 (01) :84-98