Elucidating Parasitic Currents in Proton-Exchange-Membrane Electrolytic Cells via Physics-Based and Data-Driven Modeling

被引:0
作者
Karyofylli, Violeta [1 ]
Raman, K. Ashoke [1 ]
Hammacher, Linus [1 ,2 ]
Danner, Yannik [1 ,2 ]
Kungl, Hans [1 ]
Jodat, Eva [1 ]
Eichel, Rudiger-A. [1 ,2 ,3 ]
机构
[1] Forschungszentrum Julich, Inst Energy Technol Fundamental Electrochem IET 1, Julich, Germany
[2] Rhein Westfal TH Aachen, Inst Phys Chem, Aachen, Germany
[3] Rhein Westfal TH Aachen, Fac Mech Engn, Aachen, Germany
来源
ELECTROCHEMICAL SCIENCE ADVANCES | 2025年 / 5卷 / 03期
关键词
data-driven; degradation; modeling; parasitic current; physics-based; proton-exchange membrane; sensitivity analysis; surrogate; uncertainty quantification; water electrolysis; WATER; HYDROGEN; TEMPERATURE; DISSOLUTION; DEGRADATION; CROSSOVER; FAILURE;
D O I
10.1002/elsa.70000
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Proton-exchange membrane (PEM) water electrolysis is pivotal for green hydrogen production, necessitating accurate predictive models to manage their non-linearities and expedite commercial deployment. Understanding degradation mechanisms through macro-scale modeling and uncertainty quantification (UQ) is crucial for advancing this technology via efficiency enhancement and lifetime extension. This study primarily utilizes a one-dimensional physics-based model to elucidate the presence of electron transport within the PEM, another degradation phenomenon, besides gas crossover. This work also applies a machine learning (ML) algorithm, such as eXtreme Gradient Boosting (XGBoost), to model PEM electrolytic cell (PEMEC) operation based on a dataset generated from the previously mentioned physics-based model. The ML model excels in predicting the polarization behavior. Based on this surrogate model, UQ and sensitivity analysis are finally employed to enlighten the dependence of PEMECs performance and Faradaic efficiency on the effective electronic conductivity of PEM, especially when electronic pathways exist within the membrane and operating at low current densities.
引用
收藏
页数:12
相关论文
共 48 条
[1]  
[Anonymous], 2020, BUNDESMINISTERIUM FR
[2]  
[Anonymous], 2023, BUNDESMINISTERIUM FR
[3]   Understanding the effects of material properties and operating conditions on component aging in polymer electrolyte water electrolyzers [J].
Babic, Ugljesa ;
Tarik, Mohamed ;
Schmidt, Thomas Justus ;
Gubler, Lorenz .
JOURNAL OF POWER SOURCES, 2020, 451
[4]   Review-Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development [J].
Babic, Ugljesa ;
Suermann, Michel ;
Buechi, Felix N. ;
Gubler, Lorenz ;
Schmidt, Thomas J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) :F387-F399
[5]   Hydrogen and oxygen generation with polymer electrolyte membrane (PEM)-based electrolytic technology [J].
Badwal, S. P. S. ;
Giddey, S. ;
Ciacchi, F. T. .
IONICS, 2006, 12 (01) :7-14
[6]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[7]   Membrane degradation in PEM water electrolyzer: Numerical modeling and experimental evidence of the influence of temperature and current density [J].
Chandesris, M. ;
Medeau, V. ;
Guillet, N. ;
Chelghoum, S. ;
Thoby, D. ;
Fouda-Onana, F. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (03) :1353-1366
[8]   Experimental and theoretical evaluation of a 60 kW PEM electrolysis system for flexible dynamic operation [J].
Crespi, Elena ;
Guandalini, Giulio ;
Mastropasqua, Luca ;
Campanari, Stefano ;
Brouwer, Jacob .
ENERGY CONVERSION AND MANAGEMENT, 2023, 277
[9]   In Situ Quantification of Electronic Short Circuits in PEM Fuel Cell Stacks [J].
De Moor, G. ;
Charvin, N. ;
Bas, C. ;
Caque, N. ;
Rossinot, E. ;
Flandin, L. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (08) :5275-5282
[10]  
DECHEMA acatech, 2024, COMP AN INT HYDR STR