Reduced Thermal Conductivity in SnSe2 Moire Superlattices

被引:0
作者
Ran, Yutong [1 ]
Meng, Chen [1 ]
Ma, Yunpeng [1 ]
Li, Qian [1 ]
Zhu, Hongwei [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
chemical vapor deposition; Moire superlattices; SnSe2; thermalconductivity; temperature-dependentRaman spectroscopy; INTERFACE; PHASE;
D O I
10.1021/acsnano.5c00295
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-dimensional (2D) materials with inherently low thermal conductivity offer significant advantages for thermal management due to constrained phonon transport. The introduction of rotational degrees of freedom in layered 2D materials to form Moire superlattices enables precise modulation of material properties, including electronic band gaps and phonon scattering mechanisms. While simulations have demonstrated that twisted multilayer Moire structures can significantly reduce thermal conductivity through enhanced scattering and localized phonon modes, experimental progress has been limited due to challenges in synthesizing multilayer superlattices. In this study, we report the in situ synthesis of SnSe2 nanosheets with twisted multilayer Moire structures using a scalable chemical vapor deposition method. These superlattices, exhibiting multiple Moire periods, achieve a significant reduction in thermal conductivity compared to regular multilayer structures, driven by enhanced phonon scattering, lattice mismatch, and localized phonon modes. This work establishes multilayer Moire superlattices as a promising and scalable platform for engineering low thermal conductivity 2D materials for advanced energy and electronic applications.
引用
收藏
页码:10452 / 10460
页数:9
相关论文
共 45 条
  • [1] Li D., Gong Y., Chen Y., Lin J., Khan Q., Zhang Y., Li Y., Zhang H., Xie H., Recent progress of two-dimensional thermoelectric materials, Nano-Micro Lett., 12, (2020)
  • [2] Zhong Y.J., Zhang L., Linseis V., Qin B.C., Chen W.D., Zhao L.D., Zhu H.W., High-quality textured SnSe thin films for self-powered, rapid-response photothermoelectric application, Nano Energy, 72, (2020)
  • [3] Gu X., Wei Y., Yin X., Li B., Yang R., Colloquium: phononic thermal properties of two-dimensional materials, Rev. Mod. Phys., 90, (2018)
  • [4] Zhang Y., Lv Q., Wang H., Zhao S., Xiong Q., Lv R., Zhang X., Simultaneous electrical and thermal rectification in a monolayer lateral heterojunction, Science, 378, pp. 169-175, (2022)
  • [5] Song H., Liu J., Liu B., Wu J., Cheng H.M., Kang F., Two-dimensional materials for thermal management applications, Joule, 2, pp. 442-463, (2018)
  • [6] Wei T.R., Wu C.F., Li F., Li J.F., Low-cost and environmentally benign selenides as promising thermoelectric materials, J. Materiomics, 4, pp. 304-320, (2018)
  • [7] Shafique A., Samad A., Shin Y.H., Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS<sub>2</sub> and SnSe<sub>2</sub>: a first principles study, Phys. Chem. Chem. Phys., 19, pp. 20677-20683, (2017)
  • [8] Cao Y., Fatemi V., Fang S., Watanabe K., Taniguchi T., Kaxiras E., Jarillo-Herrero P., Unconventional superconductivity in magic-angle graphene superlattices, Nature, 556, pp. 43-50, (2018)
  • [9] Cao Y., Fatemi V., Demir A., Fang S., Tomarken S.L., Luo J.Y., Sanchez-Yamagishi J.D., Watanabe K., Taniguchi T., Kaxiras E., Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature, 556, pp. 80-84, (2018)
  • [10] Ahn S.J., Moon P., Kim T.H., Kim H.W., Shin H.C., Kim E.H., Cha H.W., Kahng S.J., Kim P., Koshino M., Dirac electrons in a dodecagonal graphene quasicrystal, Science, 361, pp. 782-786, (2018)