Controlling skyrmion Hall effect dynamics in constricted ferromagnetic nanowires

被引:0
作者
Al Saidi, W. [1 ]
Sbiaa, R. [1 ]
机构
[1] Sultan Qaboos Univ, Coll Sci, Dept Phys, POB 36, Muscat 123, Oman
关键词
Magnetic nanowires; Micromagnetism; Spintronics;
D O I
10.1016/j.jmmm.2024.172768
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic skyrmions, nanoscale topologically protected spin textures, hold immense potential for next-generation data storage and logic devices, particularly in racetrack memory applications due to their stability and low energy requirements. However, challenges such as the skyrmion Hall effect (SkHE) and non-uniform spacing between skyrmions hinder their implementation. A novel approach using constricted nanowires to mitigate SkHE and improve skyrmion control is proposed. Through advanced micromagnetic simulations, we examine the dynamics of a Ne<acute accent>el skyrmion under spin-transfer torque and explore the influence of constriction geometry on skyrmion motion. Our findings demonstrate that strategic use of notched regions effectively controls skyrmion trajectory, enhances velocity, and regulates skyrmion spacing. This presents a promising solution for reliable and efficient skyrmion-based spintronic devices.
引用
收藏
页数:6
相关论文
共 31 条
[1]   Annihilation mechanisms for interacting skyrmions in magnetic nanowire [J].
Al Saidi, W. ;
Bhatti, S. ;
Piramanayagam, S. N. ;
Sbiaa, R. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (20)
[2]   Control of Skyrmions in Confined Devices for Multistate Memory Application [J].
Al Saidi, Warda ;
Sbiaa, Rachid ;
Al Risi, Suleiman ;
Al Shanfari, Fatma ;
Dusch, Yannick ;
Tiercelin, Nicolas .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2024,
[3]   Stabilizing magnetic skyrmions in constricted nanowires [J].
Al Saidi, Warda ;
Sbiaa, Rachid .
SCIENTIFIC REPORTS, 2022, 12 (01)
[4]   Control of magnetization reversal and domain structure in (Co/Ni) multilayers [J].
Al Subhi, A. ;
Sbiaa, R. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 489
[5]   The 2020 skyrmionics roadmap [J].
Back, C. ;
Cros, V ;
Ebert, H. ;
Everschor-Sitte, K. ;
Fert, A. ;
Garst, M. ;
Ma, Tianping ;
Mankovsky, S. ;
Monchesky, T. L. ;
Mostovoy, M. ;
Nagaosa, N. ;
Parkin, S. S. P. ;
Pfleiderer, C. ;
Reyren, N. ;
Rosch, A. ;
Taguchi, Y. ;
Tokura, Y. ;
von Bergmann, K. ;
Zang, Jiadong .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (36)
[6]   Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature [J].
Barker, Joseph ;
Tretiakov, Oleg A. .
PHYSICAL REVIEW LETTERS, 2016, 116 (14)
[7]   Nucleation and manipulation of single skyrmions using spin-polarized currents in antiferromagnetic skyrmion-based racetrack memories [J].
Belrhazi, Hamza ;
El Hafidi, Mohamed .
SCIENTIFIC REPORTS, 2022, 12 (01)
[8]   Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles [J].
Dohi, Takaaki ;
DuttaGupta, Samik ;
Fukami, Shunsuke ;
Ohno, Hideo .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Skyrmions on the track [J].
Fert, Albert ;
Cros, Vincent ;
Sampaio, Joao .
NATURE NANOTECHNOLOGY, 2013, 8 (03) :152-156
[10]   Skyrmion ratchet propagation: utilizing the skyrmion Hall effect in AC racetrack storage devices [J].
Goebel, Boerge ;
Mertig, Ingrid .
SCIENTIFIC REPORTS, 2021, 11 (01)