Radio Frequency Measurements for Electrical Impedance Tomography

被引:0
作者
Battistel, Alberto [1 ]
Wilkie, Jack [1 ]
Chen, Rongqing [1 ,2 ]
Karime, Ahmad [1 ]
Moeller, Knut [1 ,2 ]
机构
[1] Furtwangen Univ HFU, Inst Tech Med ITeM, Jakob Kienzle Str 17, D-78054 Villingen Schwenningen, Germany
[2] Univ Freiburg, Fac Engn, Freiburg, Germany
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 24期
关键词
Electrical impedance tomography; EIT; vector network analyzer; VNA; phantom; S-parameters; Z-parameters; RECONSTRUCTION; SYSTEM;
D O I
10.1016/j.ifacol.2024.11.106
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electrical Impedance Tomography (EIT) is a medical imaging technique that employs small alternating currents to produce tomographic images. Usually, a single current frequency is used and the out-of-phase component of the signals is discarded. Here, we present a Radio Frequency (RF) approach based on a Vector Network Analyzer (VNA) for EIT for the first time. This approach allows the simultaneous acquisition of electrical complex signals over a broad frequency range between 10 kHz and 1 GHz. The results show that the real part of the signals gives the best-reconstructed images and images performed at frequencies higher than 10 MHz are unreliable. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:608 / 613
页数:6
相关论文
共 50 条
[1]   Electrical Impedance Tomography Hardware with Demodulation [J].
Benetti, Rafael ;
Cavalheiro, Andre C. M. ;
Nasiri, Hossein ;
Takimoto, Rogerio Y. ;
Duran, Guilherme C. ;
Ueda, Edson K. ;
Ferro, Rafael A. O. ;
Barari, Ahmad ;
Martins, Thiago C. ;
Tsuzuki, Marcos S. G. .
IFAC PAPERSONLINE, 2023, 56 (02) :5609-5614
[2]   Reconstruction of admittivity distribution without phase measurements in multi-frequency electrical impedance tomography (MFEIT) [J].
Kuusela, P. ;
Pourghaz, M. ;
Seppanen, A. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (03)
[3]   A shape optimization approach for electrical impedance tomography with point measurements [J].
Albuquerque, Yuri Flores ;
Laurain, Antoine ;
Sturm, Kevin .
INVERSE PROBLEMS, 2020, 36 (09)
[4]   Design and implementation of a high frequency electrical impedance tomography system [J].
Halter, R ;
Hartov, A ;
Paulsen, KD .
PHYSIOLOGICAL MEASUREMENT, 2004, 25 (01) :379-390
[5]   Frequency marked electrodes in electrical impedance tomography [J].
Granot, Y. ;
Rubinsky, B. .
13TH INTERNATIONAL CONFERENCE ON ELECTRICAL BIOIMPEDANCE AND THE 8TH CONFERENCE ON ELECTRICAL IMPEDANCE TOMOGRAPHY 2007, 2007, 17 :380-383
[6]   A Wearable Open-Source electrical impedance tomography device [J].
Creegan, Andrew ;
Bradfield, Joshua ;
Richardson, Samuel ;
Johns, Llewellyn Sims ;
Burrowes, Kelly ;
Kumar, Haribalan ;
Nielsen, Poul M. F. ;
Tawhai, Merryn H. .
HARDWAREX, 2024, 18
[7]   A Mismatch Correction Method for Electrode Offset in Electrical Impedance Tomography [J].
Shi, Yanyan ;
Lou, Yajun ;
Wang, Meng ;
Tian, Zhiwei ;
Yang, Bin ;
Fu, Feng .
IEEE SENSORS JOURNAL, 2022, 22 (07) :7248-7257
[8]   Gold Electrode Sensors for Electrical Impedance Tomography (EIT) Studies [J].
Bera, Tushar Kanti ;
Nagaraju, J. .
2011 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS), 2011, :24-28
[9]   Accurate position estimation methods based on electrical impedance tomography measurements [J].
Vergara, Samuel ;
Sbarbaro, Daniel ;
Johansen, T. A. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (08)
[10]   Managing erroneous measurements of dynamic brain electrical impedance tomography after reconnection of faulty electrodes [J].
Li, Haoting ;
Liu, Xuechao ;
Xu, Canhua ;
Yang, Bin ;
Fu, Danchen ;
Dong, Xiuzhen ;
Fu, Feng .
PHYSIOLOGICAL MEASUREMENT, 2020, 41 (03)