Well-posedness and regularity properties of 2d β-planestochastic Navier-Stokes equations in a periodic channel

被引:0
作者
Cacchio, Yuri [1 ]
Hannani, Amirali [2 ]
Staffilani, Gigliola [3 ]
机构
[1] Gran Sasso Sci Inst, Viale Francesco Crispi, 7, I-67100 Laquila, Italy
[2] Katholieke Univ Leuven, Inst Theoret Fys, Celestijnenlaan 200D, B-3001 Leuven, Belgium
[3] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA | 2025年 / 18卷 / 01期
关键词
Stochastic Navier-Stokes; beta-plane; Well-posedness; Stationary solution; 2-DIMENSIONAL TURBULENCE; STATIONARY SOLUTIONS; ZONAL JETS; PLANE; SPECTRA; SURFACE; FLOWS;
D O I
10.1007/s40574-024-00451-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the 2d beta-plane stochastic Navier-Stokes equations in a periodic channel. We prove the well-posedness and existence of the stationary measure, as well as certain regularity estimates concerning the support of the stationary measure. The mentioned estimates are crucial for the rigorous study of the cascade phenomena in this equation [8]. To the best of our knowledge, this is the first mathematically rigorous treatment of these equations involving both the stochastic noise and the Coriolis force.
引用
收藏
页码:65 / 84
页数:20
相关论文
共 53 条
  • [1] Al-Jaboori M., Wirosoetisno D., Navier–Stokes equations on the β-plane, Discrete Contin. Dyn. Syst. B, 16, 3, pp. 687-701, (2011)
  • [2] Batchelor G., Computation of the energy spectrum in homogeneous two-dimensional turbulence, Phys. Fluids, 12, 12, pp. 2-233, (1969)
  • [3] Batchelor G., An Introduction to Fluid Dynamics, (2000)
  • [4] Bedrossian J., Coti Zelati M., Punshon-Smith S., Et al., Sufficient conditions for dual cascade flux laws in the stochastic 2D Navier–Stokes equations, Arch. Ration. Mech. Anal, 237, pp. 103-145, (2020)
  • [5] Bensoussan A., Stochastic Navier–Stokes equations, Acta Appl. Math, 38, pp. 267-304, (1995)
  • [6] Boffetta G., Ecke R., Two-dimensional turbulence, Annu. Rev. Fluid Mech, 44, pp. 427-451, (2012)
  • [7] Cacchio Y., Global well-posedness for eddy-mean vorticity equations on T<sup>2</sup>, Nonlinear Differ. Equ. Appl, 31, (2024)
  • [8] Cacchio Y., Hannani A., Staffilani G., (2024)
  • [9] Carigi G., Ergodic Properties and Response Theory for a Stochastic Two-Layer Model of Geophysical Fluid Dynamics, (2021)
  • [10] Carigi G., Brocker J., Kuna T., Exponential ergodicity for a stochastic two-layer quasi-geostrophic model, Stoch. Dyn, 23, 2, (2023)