Supercapacitors or electrochemical capacitors are known for their supporting pulse power because of their highpower density compared to the battery. In this work, Al and Zn doped SnSb, i.e., Sn0.95SbZn0.05, Sn0.9SbZn0.1, Sn0.95SbAl0.05, and Sn0.9SbAl0.1 have been synthesized through chemical co-precipitation method. The powder Xray diffraction, Raman spectroscopy, and UV-visible spectroscopy are intensely scrutinised to infer the phase formation, vibrational, and optical properties of the synthesized materials. Furthermore, the SEM, TEM, and Xray photoelectron spectroscopy are used to study the material's morphology, chemical, and oxidation state; the Zn-doped SnSb alone focused because of their better electrochemical performance than the Al-doped SnSb. Using a three-electrode setup, the electrochemical performance of the following Sn0.95SbZn0.05, Sn0.9SbZn0.1, Sn0.95SbAl0.05, and Sn0.9SbAl0.1 are evaluated in that Sn0.95SbZn0.05 has recorded higher specific capacitance of 588 F/g at 1A/g than the other. Then, the electrochemical analysis is further proceeded with the fabrication of an asymmetric device based on Swagelok assembly in which activated carbon acts as the negative electrode and Sn0.95SbZn0.05 as the positive electrode and has recorded the maximum power and energy density value of 4266 W/Kg and energy density of 8.57 Wh/Kg. It also has shown outstanding cyclic stability for 5000 charge-discharge cycles at 10 A/g.