Performance Assessment of Synchronized Phasor Measurement-Based Parameter Estimation for Distribution Networks

被引:0
作者
Carta, Daniele [1 ]
Benigni, Andrea [1 ,2 ,3 ]
Sitzia, Carlo [4 ]
Pegoraro, Paolo Attilio [4 ]
Sulis, Sara [4 ]
机构
[1] Forschungszentrum Julich, IEK Energy Syst Engn 10, D-52428 Julich, Germany
[2] Rhein Westfal TH Aachen, D-52056 Aachen, Germany
[3] JARA Energy, D-52425 Julich, Germany
[4] Univ Cagliari, Dept Elect & Elect Engn, I-09123 Cagliari, Italy
来源
2022 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES, SEST | 2022年
关键词
Parameter estimation; Phasor measurement units; Real-time systems; Measurement uncertainty; Smart Grids;
D O I
10.1109/SEST53650.2022.9898484
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents the assessment of an enhanced line parameter estimation technique for modern distribution networks. The estimation method takes advantage of the use of Phasor Measurement Units or, more in general of synchronized phasor measurements. A comprehensive modeling of the uncertainty of synchronized data permits performing an accurate estimation. The validity of the estimation technique has been tested on a portion of the digital twin of the Forschungszentrum Julich (FZJ) campus, a self-managed distribution network with more than 100 nodes. Realistic measurement assumptions have been considered by taking into account the accuracy of a measurement chain (instrument transformer and measurement device) for distribution networks. Furthermore, the presence of distributed generation has been also taken into account. The results will show that the parameter estimation in these challenging conditions is successful, and the technique can be applied for the analysis of real distribution networks.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Inertia Estimation of Wind Power Plants Based on the Swing Equation and Phasor Measurement Units [J].
Beltran, Omar ;
Pena, Rafael ;
Segundo, Juan ;
Esparza, Aaron ;
Muljadi, Eduard ;
Wenzhong, David .
APPLIED SCIENCES-BASEL, 2018, 8 (12)
[42]   Physical parameter estimation based FDI with neural networks [J].
Han, Z ;
Frank, PM .
(SAFEPROCESS'97): FAULT DETECTION, SUPERVISION AND SAFETY FOR TECHNICAL PROCESSES 1997, VOLS 1-3, 1998, :283-288
[43]   Relevance feedback based on parameter estimation of target distribution [J].
Sia, KC ;
King, I .
PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, :1974-1979
[44]   Static parameter estimation and testability analysis of distribution lines based on multi-source measurement information [J].
Chen, Lupeng ;
Liu, Jian ;
Pan, Zhongmei ;
Zhang, Zhihua .
FRONTIERS IN ENERGY RESEARCH, 2023, 11
[45]   Interval Dynamic Harmonic High-Resolution State Estimation for Distribution Networks Based on Multisource Measurement Data Fusion [J].
Zhu, Tiechao ;
Shao, Zhenguo ;
Lin, Junjie ;
Zhang, Yan ;
Chen, Feixiong .
IEEE SENSORS JOURNAL, 2025, 25 (04) :6682-6697
[46]   Measurement-based inertia estimation method considering system reduction strategies and dynamic equivalents [J].
Moraes, Guido Rossetto ;
Pozzi, Fabio ;
Ilea, Valentin ;
Berizzi, Alberto ;
Carlini, Enrico Maria ;
Giannuzzi, Giorgio ;
Zaottini, Roberto .
2019 IEEE MILAN POWERTECH, 2019,
[47]   A Parameter Estimation of Weibull Distribution for Reliability Assessment with Limited Failure Data [J].
Enkhmunkh, Nemekhbayar ;
Kim, Gwang Won ;
Hwang, Kab-Ju ;
Hyun, Seung-Ho .
IFOST: 2007 INTERNATIONAL FORUM ON STRATEGIC TECHNOLOGY, 2007, :39-42
[48]   SVD-Based Voltage Stability Assessment From Phasor Measurement Unit Data [J].
Lim, Jong Min ;
DeMarco, Christopher L. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (04) :2557-2565
[49]   A Data-Driven Topology and Parameter Joint Estimation Method in Non-PMU Distribution Networks [J].
Wang, Xiaoxue ;
Zhao, Yikang ;
Zhou, Yue .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (01) :1681-1692
[50]   The parameter estimation algorithms based on the dynamical response measurement data [J].
Xu, Ling .
ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (11)